
I 

ü 
o 

lv 

00S020 

Preliminary Reports, Memoranda 
and Technical Notes of the ARPA 
Materials Summer Conference 

Woods Hole, Massachusetts 
VOLUME I 

July 1971 

i- • 

Sponsored by 
Advanced Research Projecta Agency 
ARPA Order No. 0236 

r , 

I      . 

' 
», 

^Vl)^/»       Department of Materials and Metallurgical Engineering 

((•produced by 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U S Dsporlmenl of Commerce 
Sprlngflsld VA22I31 

tP 
-7 I   V* 

—».-••k, 



DISCLAIMER NOTICE 

THIS DOCUMENT IS THE BEST 

QUALITY AVAILABLE. 

COPY FURNISHED CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE LEGIBLY. 



PRELIMINARY REPORTS, MEMORANDA AND TECHNICAL NOTES 

of the 

ARPA MATERIALS SUMMER CONFERENCE 

Woods Hole, Massachusetts 

July 1971 

I 
ARPA Order Number:  0236 
Program Code Number:  1D10 * „, u* -^ 
Contractor:  The Regents of The University of Michigan 
Effective Date of Contract:  1 May 71 
Contract Expiration Date:  30 Apr 72 
Amount of Contract:  $254,000 
Contract Number:  DAHC15-71-C-0253 
Principal Investigator:  Professor Edward E. HucKe 
frincipaa. xi y      Department of Materials t Metallurgical 

Engineering 
/       The University of Michigan 
t,       Ann Arbor, Michigan 48104 

(313) 764-3302 

n V 
f 

V J 



■ 

t 
I 
I. 
I 
I 

I 
1 
1 
I 
I 
I 
I 
I 

VOLUML I TABLE OF CONTENTS 

I. Foreword 

II. Steeriny Committee 

III. Participants 

IV. Consultanta 

V. Preliminary Huporta, Memoranda and Technical Notes 

The following papers fall into two categories; (1) papers 
in a state ready for publication, and (2) reports and 
memoranda for limited distribution representing work in 
progress.  The former category is available for general 
distribution and in some cases are in the process of 
publication in the appropriate technical journals.  The 
limited distribution reports and memoranda represent 
initial ideas, problem suggestions, position papers, and 
status reports and are aimed primarily to stimulate dis- 
cussion with the Council.  However, they are available 
subject to the author's release by request to the Project 
Director.  Titles marked with an asterisk are reports 
that are being published. 

™M PAGE 

^Gradients in Polymeric Materials 
M. U. Dover and M. Shen    1 

Effect of Strain on the I'urmi Energy 
R. Gomor and R. M. Thomson 15 

Note on Density Determination of Amorphous Materials 
R. Gomer        29 

Modified Null-Flu* Magnetic Suspension and Propulsion 
Systen for High-Speed Transportation 

M. Tinkham and P. L. Richards 33 

'Magnetic Suspension and Propulsion Systems for High- 
Speed Transportation 

N. Tinkhan and P. L. Richards ?3 

Conservation Laws and Energy Release Ratoa 
B, ttudiansky and J. Rlc«  123 

■ • 

I 

J 

iii 



or implied, of the Advanced Research Proierts 
Agency or the U.S. Government.      "03ects 

)J~ 

I 
I 
1 



TITLE PAGE 

Application of a Defect Model to Vitreous Solids 
R. A. Huggins 135 

Thermodynamic Properties of Liquid Metals 
j. L. Margrave 161 

Stress Corrosion Cracking in Plastic Solids Including 
the Role of Hydrogen 

J. J. Oilman iöi 

A Unified Theory for the Free Energy of Inhomogeneous 
Systems                               , „._ 

L. A. Swanger, G. M. Pound and J. P. Hirth 205 

Theory of Ionic Transport in Crystallographic Tunnels 
W. H. Flygare and R. A. Huggins 235 

Effect of Stress on Electrochemical Ditsolution 
R. Gomer and R. M. Thomson 249 

Amorphous Metallic Alloys 
p. E. Duwez 257 

Diffusion Through Anisotropie Polymer Systems 
j. D. Ferry 277 

Remarks on Montroll's Nonlinear Wave Equation 
G. H. Vineyard  285 

Random Close Packing of Spheres 
G. H. Vineyard 291 

Note on IR Windows 
N. Bloembergen 299 

Line Tension on Kinks on Fracture Cracks 
J. J. Gilman, J. P. Hirth and R. M. Thomson 311 

States of Ease of Polymeric Entanglement Networks 
Crosslinked in Strained States 

J.   D.   Ferry 327 

Diffusion Through Composite Polymer Systems 
j. D. Ferry 341 

Some Problems in Bulk Polymeric Systems 
H. Reiss 349 

I 
I 

I 

:. 

D 
iv 



t 
I 
I 
1 
I 
<* 

D 
0 
: 

i 

2™* PAGE 

A Note on the Ground State Energy of an Assembly 
of Interacting Electrons 

A. Isihara and E. W. Montroll 413 

A Rigid-Plastic Model of Spall Fracture by Hole 
Growth 

F. A. McClintock   ...... 417 

SD Effect 
D. C. Drucker  455 

Energy to Create New Surface During Crack Propagation 
D. C. Drucker  459 

On the Characteristics of Gradient Materials 
M. B. Bever         . , . , 46 3 

Analysis of Stress Intensity Factors in a Plate with 
Any Given Distribution of Cracks:  A Translation 

M. Ishida 483 

Edge Dislocation Arrays Around a Crack Under Tension 
F. A. McClintock      515 

High-Temperature Stability of Silicon Nitride 
J. L. Wood, G. P. Adams and J. L. Margrave 531 

*The Use of Levitation in Inorganic Synthesis 
J. L. Margrave, J. A. Treverton and P. W. Wilson . .533 

High-Temperature Properties of Nb and Zr 
D. W. Bonnell, J. L. Margrave and A. J. Valerga. . . 545 

*Pyrolysis of Polymers and Simple Organic Molecules 
J. L. Margrave  .... 557 

Emissivities of Liquid Metals at Their Fusion 
Temperatures 

D. W. Bonnell, J. A. Treverton, A. J. Valerga and 
J. L. Margrave         559 

Heats of Formation of Various Types of Carbon and 
Graohite by Combustion Calorimetry 

J. L. Wood and J. L. Margrave 571 

The Li/CFX  Battery and Its Characteristics 
R. B. Badachhape, J. L. Wood, A. J. Valerga and 
J. L. Margrave  »   , . 57 3 



TITLE 
  PhGE 

Stress Waves Due to a Short Duration Pressure PUIM 
on a Semi-Infinite Body of Layered Composite 

J. A. Krumhansl and E. H. Lee  57e 

Determination of Stress Profiles for Waves in 
Periodic Composites 

L. Bevilacqua, W. Kohn, J. A. Krumhansl and 
E. H. Lee  
 3«7 

A Proposed Method for the Evaluation of the Thermo- 
dynanuc Properties of the Glassy Carbon-Graphite 
Equilibrium r 

E. E. Hucke and S. K. Das         589 

Flow Via Dislocations in Ideal Glasses 
J. J. Gilman  -.. 
 649 

*Hardness - A Strength Microprobe 
J. J. Gilman   



VOLUME   II TABLE  OF  CONTENTS 

PAGE 

Abstract by J.   P.   llirth  and  F.   A.   McClintock iv 

I.     Summary  Report  by  11.   H.   Johnaon,   A.   J.   Sedriks 
and M.   Cohen        1 

II.  Comments on  AdsorpLion-Sensitiv^ Cracktnq by 
A. R. C. Wostwood anci R. M. Lataninion 6 2 

III.  Unit Frocoasoa it) Stresa-Corrciion Ciackiny 
by R. W. Stachle 104 

JV.  Defect Physics in Streas-Corroaion Crackinq 
by R. Thomson and J. P. Mirth 182 

V.  Fracture Mechanics for Stresa-Corrosion 
Cracking by F. A. McClintock and J. H. Rico. . . 202 

VI.  Boundary Segregation Effects in i;nvi ronmontal 
Degradation by J. II. Westbrook 214 

VII.  Fractography of Stress-Corrosion Failures-- 
Mechanistic Aspects by E. N. Pugh 218 

VIII.  Practical Problems of Stress-Corrosion 
Cracking in High Strength Metallic Materials 
by Markus 0. Spcidcl 222 

IX.  Stress Corrosion in Nuclear Systomn 
by S. 11. bush 244 

X.  Some Thoughts on SCC Problems by D. F. Brown . . 28S 

XI.  Notes on Electrochemistry by R. A. Oriani. . . . 288 

Xli.  A Mechanism of Strcas-Corrosion Cracking 
in Plastic Solids by J. J. Oilman 294 

XIII.  Environmentally Induced Brittle Delayed 
Failure:  The Htrcss-Corrosion Problem 
by A. R. Troiano 296 

XIV.  Remarks on Stress-Corrosion Cracking by 
II. H. Uhlig 30* 

vli 



1 
a 

Thib collection of papers dot-s not 
constitute a formal reporting of the activities 
of the ARPA Materials Reucarch Council Summer 
Conference.  Lach report, memorandum 01 technical 
note is a draft of the author or authora and is 
their work alone.  The Steerlmj Committee, in 
conjunction with the authors, will decide how 
this material can best be presented as a formal 
report to ARPA. 

Foreword 

vl Ik 



Steering Coimnit^3e 

Professor Elliott W. Montroll 
Secretary of the Steering Committee 
Department of Physics & Astronomy 
University of Rochester 
Rochester, New York 14534 

Professor Morris Cohen 
Department of Metallurgy & Materials Science 
Maisachusetts Institute of Technology 
Camuridgo, Massachusetts 02139 

Professor John P. Hirth 
Metallurgical Kngineeritig Department 
Ohio State University 
Columbus, Ohio 43201 

Piofessor John L. Margravo 
Department of Chemistry 
Rice University 
Houston, Texas 77001 

Professor Frank A. McClintock 
Uupartment of Mechanical Engineering 
Massachusotts Institute of Technology 
Cambridge, Massachusetts 02139 

Professor Howard Reist 
üopsrtawnt of Cheaiatry 
University nf California 
Los Angeles, California 90024 

Professor Janes Rice 
Division of engineering 
Brown University 
Providence, R^ode Island 02912 

Professor Michael Tinkha» 
Dspsrtawnt of Physics 
Harvard Jniversity 
C«*A>ri4te, Massactiunetts 021 Jt 

ur. «Worge H. vineyard 
»rookheven Mstional Laboratory 
Upton, Long Uland. Mew York 1197) 



.1 I 

Project Director 

Professor Edward E. Hucke 
Department of Materials and Metallurgical 

Engineering 
The University of Michigan 
Ann Arbor, Michigan 48104 

Participants 

Professor Michael B. Bever 
Department of Metallurgy & Materials Science 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

Professor Nico Bloembergen 
Division of Engineering and Applied Physics 
Pierce Hall 
Harvard University 
Cambridge;, Massachusetts 02138 

Professor Bernard Budiansky 
Division of Engineering & Applied Science 
Horvard University 
Cambridge, Massachusetts 02138 

Dean Danie] C. Drucker 
Engineering College 
University of Illinois 
Urbana, Illinois 61801 

Professor Pol E. Duwez 
W, M. Keck Laboratory of Enqineering 

Materials 
California Institute of Technoloqy 
Pasadena, California 01109 

Professor John D. Ferry 
Uupartment of Chi'iristry 
University of Wisconsin 
Madison, Wisconsin *> 1706 

Professor Willi:; II. llygare 
Noyes Chemical Laboratory 
University of Illinois 
Urbana, Illinois 61801 

Dr. John J. Oilman, Director 
NaUTials Kesearch Center 
Allied Chemical Corporation 
Morristown, New Jersey 07960 

.1 

I 
» 



«- 

Professor Robert Gomer 
James Franck Institute 

«. 5640 Ellis Avenue 
Chicago, Illinois 60637 

Professor Robert A. Huggins 
Center for Materials Research 
Stanford University 
Stanford, California 94305 

Professor Walter Kohn 
Department, of Physics 
University of California 
La Jolla, California 92037 

Professor James A. Krumhansl 
Department of Physics 
Clark Hall of Science 
Cornell University 

U Ithaca, New York 14850 

Professor Erastus H. Lee 
Department of Applied Mechanics 
Stanford University 
Stanford, California 94305 

Professor Lonald J. Lyman 
Materials Science & Engineering 
The University of Utah 
Salt Lake City, Utah 84112 

Professor Paul L. Richards 
Department, of Physios 
University of California 
berkeley, California 94720 

Professor Albert J. Sievors 
Laboratory of Atomic & Solid State Physics 
Cornell University 
Ithaca, New York 14850 

Dr. Robb M. Thomson 
National Bureau of Standards 
Institute of Applied Technology 
Washington, D.C. 20234 

. 

XI 



. 

,1 

Guest Consultants 
Ü 

Dr. Joel A. Appelbaum 
Bell Laboratories 
600 Mountain Avenue 
Murray Hill, New Jersey 
(201)582-2156 

07974 

Dr. Francis Baratta 
Army Materials and Mechanics 

Research Center 
Watertown, Massachusetts 02172 
(617)926-1900 

Dr. A. S. Barker, Jr. 
Bell Laboratories 
600 Mountain Avenue 
Murray Hill, New Jersey 07974 
(201)582-3000 

Dr. Bernard Bendow 
Air Force Cambridge Research 

Laboratories 
L. C. Hanscom Field 
Bedford, Massachusetts 01730 

Professor A. Bienenstock 
Materials Science Department 
Stanford University 
Stanford, California 94305 
(415)321-2300 Ext. 2617 or 2534 

Dr. G. H. Bishop 
Metals Division 
Army Materials and Mechanics 

Research Center 
Watertown, Massachusetts 02172 
(617)926-1900 

Dr. Joseph I. Bluhm 
Army Materials and Mechanics 

Research Center 
Watertown, Massachusetts 02172 
(617)926-1900 

Dr. J. C. BoKf'S 
Medical Products Division 
Gulf Energy & Environmental 

Systems Company 
P.O. Box 608 
San Diego, California 92112 

Professor R. H. Bragg 
Department of Materials 

Science 
University of California 
Berkeley, California 94720 
(415)642-3815 

Dr. S. H. Bush 
Battelie-Northwest 
P.O. Box 999 
Richland, Washington 99352 
(509)946-2223 

Professor John M. Carpenter 
Nuclear Engineering Department 
300 Automotive Laboratory 
University of Michigan 
Ann Arbor, Michigan 48104 
(313)764-4260 

Dr. Fred Chompff 
Polymer Science Department 
Scientific Research Staff 
Ford Motor Company 
P.O. Box 2053 
Dearborn, Michigan 48121 
(313)323-1423 

Mr. B. Cohen 
Aeronautical Systems Support 

Branch 
Materials Support Division 
AF Materials Laboratory 
Wright-Patterson AFB, Ohio 45433 

:i 

a 
xii 



I 

.. 

: 

.. 

l! 

0 

i! 

.: 

(i 

11 

0 

Mr. W. J. Croft 
Army Materials & Mechanics 

Research Center 
Watertown, Massachusetts 02172 
{^.17)926-1900 

Dr. Gordon T. Danby 
Brookhaven National Laboratory 
Upton, Long Island, 
New York, 11973 
(516)924-6262 Ext. 2471 

Dr. Thomas Deutsch 
Raytheon Research Division 
28 Seyon Street 
Waltham, Massachusetts 02154 
(617)899-8400 

Professor H. Ehrenreich 
Pierce Hall 
Harvard University 
Cambridge, Massachusetts 02138 
(617)495-3213 

Dr. David Emin 
Division 5134 
Sandia Laboratories 
Albuquerque, New Mexico 87115 
(505)264-3431 or 5156 

Dr. Sabri Ergun 
U.S. Bureau of Mines 
4800 Forbes Avenue 
Pittsburgh, Pennsylvania 15213 

Professor David Fischbach 
Ceramic Engineering Division 
Roberts Hall, FB-10 
University of Washington 
Seattle, Washington 98195 
(206)543-8573 

Professor Merton Flemings 
Room 8-407 
Department of Materials Science 
Massachusetts Institute of 
Technology 

Cambridge, Massachusetts 02139 
(617)864-6900 Ext. 3233 

Dr. H. L. Gegel 
Advanced Metallurgical Studies 

Branch 
Metals & Ceramics Division 
AF Materials Laboratory 
Wright-Patterson AFB, Ohio 454 33 

Dr. David Goldstein 
Code 211 
Naval Ordnance Laboratory 
Silver Springs 
White Oak, Maryland 20910 

Dr. Alvin E. Gorum 
Director, Army Materials 

& Mechanics Research Center 
Watertown, Massachusetts 02172 
(617)926-1900 Ext. 275 

Dr. Barry Granoff 
Sandia Laboratories 
Sandia Base 
Albuquerque, New Mexico 87115 
(505)264-5458 

Dr. Donald E. Harrison 
Manager, Materials Science 
Research & Development Center 
Westinghouse Electric Company 
Pittsburgh, Pennsylvania 15235 
(412)256-7000 Ext. 7336 

Dr. J. D. Hoffman, Director 
Institute of Materials Science 
National Bureau of Standards 
Gaithersburg, Maryland 

Dr. Frank Horrigan 
Raytheon Research Division 
28 Seyon Street 
Waltham, Massachusetts 02154 
(617)899-8400 

Dr. John R. Jasperse 
Solid State Sciences Laboratory 
Air Force Cambridge Research 

Laboratories 
L. c. Hanscom Field 
Bedford, Massachusetts 01730 
(617)232-5464 

xiil 



Professor H. H. Johnson, Head 
Department of Materials Science 

& Engineering 
Cornell University 
Ithaca, New York 14850 
(607)256-4135 

Dr. R. P. Kambour 
Rasearch &  Development Center 
General Electric Company 
P.O. Box 8 
Schenectady, New York 12301 

Dr. R. Nathan Katz 
Chief, Ceramics Research Division 
Army Materials & Mechanics 

Research Center 
Watertown, Massachusetts 02172 
(617)926-1900 Ext. 415 

Mr. T. F. Kearns 
AIR 320A-Research & Technology 

Group 
Naval Air Systems Command 
Department of the Navy 
Washington, D.C. 20360 
(202)692-7416 

Dr. R. Latanision 
Research Institute for Advanced 

Studies 
14 50 South Rolling Road 
Baltimore, Maryland 21227 
(301)247-0770 

Dr. J. R. Low, Jr. 
Department of Metallurgy & 

Materials Science 
Carnegie-Mellon University 
Schenley Park 
Pittsburgh, Pennsylvania 15213 
(412)621-2600 

Mr, Arthur F. McLean 
Manager, Turbine Research 
Ford Motor Company 
20000 Rotunda Drive 
Dearborn, Michigan 48121 
(313)322-3859 

Professor W. G. McMillan 
Department of Chemistry 
University of California 
Los Angeles, California 90024 

Mr. David F. R. Mildnor 
Department of Nuclear Enginee«ring 
University of Michigan 
Ann Arbor, Michigan 48104 
(313)764-6220 

Dr. Perry Miles 
Raytheon Research Division 
28 Seyon Street 
Waltham, Massachusetts 02154 
(617)899-8400 

Dr. S. C. Moss 
Energy Conversion Devices, Inc. 
1675 West Maple Road 
Troy, Michigan 48084 
(313)549-7300 

Dr. R. A. Otiani 
E. C. Bain Laboratory 
United States Steel Corporation 
Research Center 
Monroeville, Pennsylvania 15146 

Mr. Antoni Paluszny 
Supervisor, Turbine Research 
Ford Motor Company 
20000 Rotunda Drive 
Dearborn, Michigan 48121 
(313)337-5515 

Dr. P. C. Paris 
Del Research Corporation 
427 Main Street 
Hellertown, Pennsylvania 18055 
(215)838-7069 

Dr. H. W. Paxton, Head 
Materials Science Department 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 
(412)621-2600 

Dr. R. Pelloux 
Room 8-305 
Massachusetts Institute of 

Technology 
Cambridge, Massachusetts 02139 

xiv 



.. 
Professor G. M. Po- nd 
Uopartm. nt of MatoriaU Science 
Stanford University 
M^f^f' California 94305 
(415)321-2300 Ext. 4257 

Ur. James Powell 
T-318 
ßrookhaven National Laboratory 
Upton, Lony Island, 
Ntw York 1197 3 
(516)924-fi262 Ext. 7789 

Dr. E. N. Pugh 
Department of Metallurgy 4 
Mining Engineering 

University of Illinois 
Urbaaa, Illinois 61801 
(217)?33-4692 

Mr. G. Quinn 
Army Materials t Mechanic« 

Research Center 
Wutertown, Massachusetts 02172 

Dean David V. Ragono 
Thayer School of Engincorinq 
Dartmouth College 
Hanover, New Hampshire 03755 
(603)646-2238 

Dr. W. G. Ramkc, Chief 
Ceramics & Graphite Branch 
Metals & Ceramic« Division 
Air Force Material« Laboratory 
Wright-Patterson AFB 
Ohio 45433 

Mr. Leo F. Saltberg 

A^Si; SÄ4!1!! PhyBic» oivuion 
AF Materials Laboratory 
Wright-Patterson AFB 
Ohio 45433 
(513)255-2433 

Dr. Richard J. Sanford 

BilSi NaVal 0rdn#nc# laboratory 

White Oak, Silver Spring 
Maryland 20910 
(301)495-8539 

Dr. Wayne W. ScanIon 
Applied Physics Dop.irtmvnt 
U.S. Naval Ordnaitco Laboratory 
White Oak, Silver Spring 
Maryland 20910 
(301)495-7773 

Or. R. j, .Schiller 
Research k  Oevolo^sieni Center 
Wostlnghous« Electric Company 
.i^?,u^9h, p«nn«ylv«nla 152 35 
(412)256-7000 

Or. A. J. Sedrlks 
Reeearch Institut« for Advanced 
Studie« 

1450 South Rolling Road 
Baltimore, Naryland 21227 
(412)621-2600 

Profe««or Mitchel Shcn 
Oopartaient of Che«i«try 
Univerelty of California 
Berkeley, California f47i»C 
(41*»§42-2111 

Dr. N. j, tlnnott* Director 
Materials Science Office 
Advanced Reeearch Project« 
Agency 

1400 Wil«on Boulevard 
Arlington, Virginia 22209 
(202)694-3010 

Or. Norton C. ilth 
5S ?},,■0• Sc»«nt4'ic Uboratory 
u>« A1«MO«,   New Mexico 

Or.  Richard A. Wmith 
TREt Section Need 
U.S.   Naval Ordnance  Laboratory 
Code 431 ' 
White Oak. Silver Sprino 
Maryland 20910 
(301)495-l)}4 

Or. Marshall Spark» 
rh« Rand Corporation 
1700 Main Street 

aSStnSXSi c•,"»'»'• 60406 



.1 
Or.  Narou« 0.  Sp«id«l 
•Ming Scivntlflc Ubor«torv 
9.0,   Bo«  mi y 

S««ttU,  Mathinoton 91124 
<a0i)455-i27f 

Prof•■•or R.  M.   rt««hlv 
0*$»«rt*«nt of   «total lurytc«! 

I n »it...   »  .       ; 

Ohio Stat« University 
1U M»at 19th Avnt* 
Coluabu«. Ohio 41210 
1414)422-42)^ 

Profnssor tu ttmrnbmti 
Division of Bnqin««riM and 
Applied Scionc« 

CAliform« Institut« of Tschnoloov 
Psssdsns. Csllfornis 91109 
(21J)79S-4t41 t«t. Il7i 

Or. C. Nsrtin Sticklsy 
Ooputy Dir art or 
Mstsrisls teisncos Offlo« 
Advsncsd Msssrch Frofscts Aosncv 
1400 Wilson fcnilsvsrd     *«•"** 
Arlington. Virginis 22209 
(202)494-1010 

or. Gsr:h L. Tingoy 
Technical   tssilsr 
Csr«»irs 4 Crsphits iwrtlon 
Osttsliv-Morthtovst 
P.O.   feoK   999 
9ichlsndt Msshington 99192 
1909)944-2419 

Or. A. II. Troisno 
O^srt^nt of Notslluroy sad 
Nstartsls 

Cssa Msstarn Msarva Uni%arslty 
Clavalsnd, Ohio 44104 
(214))40-4214 

Professor Osvid Txirnlnill 
Piarc« Hall 
OaparMnt of Allied rhysioa 
Nsrvard uniwrsity 
Csabridaa, Masvschusatts 021)0 
(4I7)49^20J0 " 

Or. N. ii. uhlig 
Oa|Mrt»ant of »Wtalluray 4 
Mstarlals Seisms 

Msssschusstts Institute of 
Toehnology 

?J?5fid9*# '«•••«chusetts 02IJ9 
(«17)044-4900 Ext. JJ1J 

Professor I», t. Mslker. Jr. 

101 Minerals Industry Ouildino 
Pannsylvsnia State üJiv«r«itr 

Professur Ja^rs O. Ml Ikes 
Oepert»rnt of Chaaical 

Cnginrer inq 
University of Michigan 

m,^.r2,:ichi^ft 8lM 

Or. Nark L.  Milkina 
L-24 

JSSuBLSS*4*140- Ubor«tory 
Uv^raore. Califorms 94990 
(419)447-1100 But. S411 

Or. «. «1. P. wusdorf« Chairaan 
Oj^srutem of Msteriels SclencJ 
Thornton Msll •^•wmre 
University «f Virulnis 

Jr. Harry V. Minsor 

■H Mesioo 07117 

Or. tichsrd Meiss 
Ar^y Materials s Mechanics 

Research Ontwr 
Materto*m, Massschusstts 02172 

Or. J. Ms*1brook 
•»«•9- S-l. (to. 1A44 
G«nersl tlectric Kesesrch 4 
Oevtlopeent Center 

Sch^n^ctady. Mew York 12109 

«Vi 



- 

: 

.1 
i 

Dr. A. R. C. Wastwood 
Uoputy Director, RIAS 
1450 South Rollin9 Road 
Baltimor«, Maryland 21227 
(301)247-0700 

Profaasor A. Yariv 
Department of Bloctrical 

Engineering 
California Institute of 

Technology 
Paaadena, California 91109 
(211)795-6841 Bxt. 1821 

Profeaaor G. 8. Y. Yoh 
Material« 4 Mutallurgxcal 

Engineering 
University of Michigan 
Ann Arbor, Michigan 48104 
(313)764-9236 

xvli 



GRADIENTS IN POLYMERIC MATERIALS 

M. Shen and M. B, Bever 

Abstract 

In this nemorandum we consider tho structure and 

properties of polymeric materials possessing spatial gradients. 

Potential applications of such materials are also discussed. 

Gradients in the structure of polymeric systems may 

be generated by varying the chemical nature of the monomers, 

the molecular constitution of the polymers and the supra- 

molecular structure or morphology of the polymers.  Gradients 

in each of these categories are possible for single-phase as 

well as heterophase systems.  Such gradients are associated 

with gradients in properties. 

The properties considered are chemical, mechanical, 

biomedical and transport properties.  Structural gradients in 

the polymeric system may lead to a desired gradient in a single 

property, or to a combination oi more than one property which 

may assume optimum values in different regions of the material. 

In the latter case, one of the properties is frequently related 

to mechanical integrity. 

Possible applications of gradient polymeric systems 

include plastic gasoline tanks, biomedical implants, and damping 

materials for a wide frequency range. 
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GRADIENTS IN POLYMERIC MATERIALS 

M. Shen and M. B. Uever 

Introduction 

The structure and properties of polynuM ir inatori.»U- 

can be varied over wide ranges.  Most of th« ijertlnont sffortl 

in this regard have been devoted to homogomums and in lOIRfl 

measure to laminated polymeric systems.  Littl« attention has 

been directed toward gradient systems, that in,   iyatftffla in 

which structure and properties vary continuously in ■paca. 

Gradient materials in general are beginning to attract 

some attention.  Bever and Duwez1 have considered gradients in 

composite materials.  Ferry2 has analyzed some aspectJ of 

gradients in the cross linking and swelling of polymers. 

In this memorandum we shall systematically discuss 

possible gradients in polymeric materials.  We shall be con- 

cerned primarily with the structure and propcrtxcs of these 

materials rather than the techniques for their preparation. 

We shall mention various illustrative examples but shall not 

attempt to explore exhaustively the entire range of possible 

applications. 

Structure 

We shall consider the structural features of polymers 

on three levels of resolution: 

i 

I 

■ 

.1 
i 

,i 

.1 
1 
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(i) tha  ohamical nature of the nionomors; 

(ii)  tlie molecular constitution of the polymers; and 

(iii)  the supramolecular structure or morphology of 

the polymers. 

In each of these categories the possibility of gradients in 

space exists.  We shall discuss these gradients flfflt for 

single-phnse systems and then for heterophase systems. 

Singlo-Pliasi! Systems 

The nature of a polymer depends first of all on the 

constituent monomers.  For instance, at room temperature the 

polymer of methyl mothacrylate is a tough, hard plastic, 

commonly known as "Plexiglas"; by contrast the polymer of 

methyl acrylate is. a |r>ft rubber. These two monomers can be 

combined to form random copolymera of any composition ranging 

from pure poly(methyl methacrylate) to pure poly(methyl acrylate). 

A gradient polymer with a spatial variation in composition can 

therefore be prepared.  Polymer chemistry offers many possi- 

bilities for creating similar compositional gradients by co- 

polymerization techniques. 

The degree of crosslinking is an important variable in 

many polymers.  For example, the rubber in an elastic band is 

lightly crosslinkod; an increase in the degree of crosslinking 

converts the same material into a hard plastic.  Various 

techniques are available for controlling the degree of cross- 

linking, such as irradiation and the use of chemical cross- 

linking agents.  These techniques can be adapted to producing 
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gradlont« in the dogroc of cross linking. Snae of th«t» tech- 

nique« have been considered by Ferry' for gradient structures 

in hydrophilic polymnrs. 

Difference« in the« degree of cross 11nkIIK} arc also 

associated with difference« in the degree of equ 111 l»r I IM 

BW. Hing (i.e., the amount of «olvent iMbilxnl in thv  polymer 

network).  The degree of equilibrium «welling ran also I*, 

controlled by changing the chemical nature of the monomers 

For example, pure poly(hydroxyethy1 mcthacrylate) can absorb 

an appreciable amount of water.  The addition of even a small 

amount of a nonhydrophllie monomer, such as methyl metha- 

crylato, to form a copolymer with hydrosyethyl methacrylate 

drastically reduces the degree of  «willing due to the absorption 

of water.  In general, the shear modulus of a polymer decreases 

with increasing degree of «wellinv. 

The average molecular weight and the molecular weiuht 

distribution are other variable« affertin, «ingle-phase polymers. 

Since these variables «-an In prlmiple be manipulated (e.g.. by 

high-»ho.ir flow), corresponding gradient structures may be 

achieved. 

Oriented polymers po««eSft certain unique features which 

di.tinguish them from unorlented ones,  for in.tanen. biasially        1 

«trotche.1 polycarbonates offer superior resistance to crating 

and uniaxially stretchml nylon has improved yield resistance. 

Gradients <n the degree and the direction of the orientation 

are of obvious interest. 
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....«:. of .upr-ol.«-»« .«f«-««»»» »• .l«»>-P*^- —* 

er,.t.n.«. Po»»-".   «• ■■■I"1- •~~"»- •,th '«* 

.,r»9t«r- -nt. HllW     «•" •""*" ,,0"W MOb*,, 

b. .»lUr .o IN." of th. .«p.-o»«.a>" •"•»««•• - 

tn MiaiopiMM yolymn, 

Th. ,r«li-«t« d».caM«J »» U» pt«vloy. MO..O« »of 

Cry>t«lliMty • cry.t.mn. ^l»~r. «. «I-W» 

r,«tio« -Meh 1. .I«.y. 9*** «—«•»•"• « •**** •*•••• 
m. ,.tlo .f cr,.t.lU«. to noo-cry."».« «..'l.l    >—'•'• 

,« b. v«i-.   T». -,... »« crywliiMty -y *• «.«*- by 

^«„1 »tM..    for . 9l~» -.»«••>. IMI I» PO..lbl. by 

eb.«,.^ U- '•" •' —"•' "- •■ ■0H•" •**'• " * 

tamsHni of  in« •«>» ^ poly^r. 
Ttw MUH of • poly^r to cry.iolUw I« tf« 

.Nt.t.^ »^ "- jaunty of if c^i« .tr-ctar..    A« l-o- 
t*,  m*mm*im     bclM mot*   tmqulMt   l» »tfiKtttf» toctie polyttyr«»«. for MMpi«* ■»•»•^ ^      ■• 

U IMillllliir'       ^r^« "^^ p*iwm IS ^J" 
.pon^-. b^^ of tho ,r^t.r r.ndc-M»... of  it. .truetuf. 

Tn. d^rM of cry.tolli«4ty l. tJioffor. offoct^ by «- ^^ 

-»- 



i«ir>M|.t.n.. i.,., .MI,,,, rMbb,r> „ ^(^„.^^ 
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«r enf...ll,»,.y.    „ f^t| , e«^,,,,^ of  ,0% ^^ 
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«»trMii.ii.euM to T.flo«. Mich K . h.« i,!..,,«. 

t». tefra. of enr.t.li,„„y M«,.^ I. ,*. *,„*,,„, „, ^ 

•"wi . MMwr .* .o piadaa. . ii.di.ni  m .h. 

•»•r~r.    other Mpwl. m .-fr.i.lll.lty, 
.«rh « ,», en«...,..«, M! ..., of tlw „^^ ^ ^^ 

(•>.. thoM of u. do«roo ot cry..«||,„,lr. J 

»oUr-r Ni,.MrM - A«„h.r «.»rt... el.., of ho.«,. . 
I*.M polyMr. o.« b. prep.,«! ^ .,„„, Mt,„mK „^^ I 

«... P-I^er. «, .«„,.*„ ln .^ 0^r ^ ii|(M ^ ^^ 

P*.« wp«.uo«.    «o.. pol^r .,„,„„, 0mntont ^ ' 

^ro^-M.    "«• Pti«c.p.l -««. of .„.o, .„.„„„,„. | 

m f.rot COO...U of WUMIm o. Ml«,, e..t.M of teo or «re 

polder.. Mich prodec« «• M-oellM -po.yh,.«,,.,  th# .^ I 

I 



.. tha .yntl««.. «I   Ulo-K coyo^rn ..,.. tb. third the synthesis 

ol  «..II copolyur..    The „«„eratlon oi   polybiends by mixing 

1. th. ..^i..t .nd MM ri.xlble method.    The structures of 

block .nd «»ft copoly».« «ro on . finer scsle than those of 

th« polybl.iHl.* 

Th. morpholoqy of hetorophs.e mixtures results from 

th. -ount .nd configuration of the constituent phases.  In 

on. poMlbl. «... one ph.se is continuous, i.e., the Mtcl», 

•nd th. p.rtlcl.. of the other ere dispersed ir it. The 

v....bl.. .re the .mount of the dispersed phase and the sizes 

.nd .h.p.. of the particle, of thi- phase: for example, they 

«.y be .ph.r.., rod. or pUtele.-.  Jn another case, each of 

m m  ph.... i. lnt.rconn.cted with itself and the two phases 

.r. lnt.rp.n.tr.tln,.  In the third case, alternatin, layers of 

th« two pha««« occur. 

in polymer» some of these different configurations can 

.. ,.n.rat.d by varying -he relative amounts of the components 

or by th. «thoJ of pr.p.ratlon.  An example of the latter is 

th. pr.p.r.tlon of a poly.tyrene-continuous matrix of a styrene- 

but.dl.n.-.tyr.n. block copolymer by casting from Us solution 

in t.tr.hydrofur.n/methyl ethyl ketone. whereas a polybutadlene- 

continuous matrix ol th. same block copolymer results if it is 

c..t from . .olutlon of bensene/hept.ne. 

Gr.dl.nt. of the morphological features of heterophase 

.yst«.. Mf involve the amount, the particle slz. and partide 

,h.pe of the dl.per..d phase.  Typical examples of genmetrlcal 
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possibilities, applied on the scsle o. composite materials, 

have been discussed by Bever and Duwe..'  I» the case ot  hetero- 

phase polymers, a gradient may be carried to the point where an        | 

inversion occurs according to the following scheme: 

r ,   „f A disoersedl   TInterconnected mixlurel [particles of A dispersed f • < f A and B J 
Yin matrix of B        J \^ 

fpartioles of B dispersedj 
* \ in matrix of A        J 

g^lfraU rnvolvinM ^npolvmeric Components 

Reinforcing fillers, usually nonpolymeric in nature, 

cause marxed changes in the properties of polymers, e.g., carbon 

bUoK in natural rubber.  The use of a concentration gradient 

of a filler in a polymer is an obvious possibility.  The good 

bonding between carbon blac* and rubber suggests that glassy 

carbon may be used in conjunction with a polymeric phase. 

A porosity gradient can be introduced into a polymer. 

Por example, a foa.ing agent may be suit-bly incorporated to 

bring about this effect. 
Another possible development is the joining of a polymer 

„ith an inorganic material, such as a metal or a ceramic, 

through a gradient.  One type of such a joint reguires a porosity 

gradlent at the surface of the inorganic material and the im- 

pregnation of the pores by the polymer. 

The doping of a polymer, such as the doping of poly- 

ethylene by iodine, changes the material from an insulator to a 

semiconductor. The use of a concentration gradient of the 
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«a4-4futes a possible development, doping agent constitutes a po 

P^r^ieB an^ ^plications .ntGrest 

T  ach of th.Bc «tegorieB, a variation in apace of . .t~. 
In each of th.a ^ ^ ^ polymerlc 

«v4-u ran bo achieved by a suitauj.  ^ property can uc ^^ to 
tn addition, more than one property may » 

ayatem.  In additxo n,ential application.  Thus 
aatisfy multiple retirements of a pote tia app 

the coupling of several optimal parties is P 

following we shall consider the ^^ ^I —-. 
.i i -^«1 4 nations Wherever t*wBia. 

properties and suggest potential applxcation 

Chemlrvnl Properties 4ntimately 
MM.iM of polymers are intimatexy 

certain chemical properties or po y 
. e of the constituent monomers.  For example, 

.elated to the nature of the introduced 
n  r« are hydrophobic.  Hydrophilicity may 

many polymers are hyarop hydrophilic 
iMfl «uch hydrophobic monomers wit. nya * 

by copolymerxzxng such hy« p hydroPhobic 
i- ic, the copolymerization o£ tne »y 

monomers.  One example is the .op 
, atvrene with the hydrophilic monomer of styr 

monomer of styrene wx Mlicitv will result from 
sulfonic acid.  A gradient of hydrophilicity 

. n  the ratio of these two monomers, 
continuously varyxng the ratio 

A possible application for materials of this typ 
p ,   i^^^.ft or automobilea. 

.«uctlon of gasoline tanks for aircraft 
the construotron   g „„„, the g..oUne fron 

A hydrophilic interior layer     P 

be inert to water in the environment. 
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increased by blending the material with polyacrylonitrile and 

polybutadiene, like ABS resins.  The use of a gradient in this 

case would be advantageous for maintaining structural integrity. 

Other chemical properties that may be imparted to one 

surface layer of a gradient polymer may be increased resistance 

to oxidation, weathering, high-temperature degradation and 

irradiation.  Resistance to specific chemical attack, such as 

by strong acids, may similarly be acnieved. 

Mechanical Properties 

In general, rubbery polymers are characterized by a 

high elastic limit, low elastic moduli, low fracture stress, 

large fracture strain and high impact resistance.  By contrast, 

glassy polymers have a low elastic limit, high elastic moduli, 

high fracture stress, small fracture strain and low impact re- 

sistance.  The values of these properties of crystalline polymers 

approximate those of the glassy polymers.  Most of the properties 

of one of these classes of materials can be modified by the 

addition of a material from another class.  These modifications 

can be achieved by methods such as solvent swelling, degree of 

crosslinking, copolymenzation, filler addition and blending. 

All of these methods have been shown in previous sections to 

be capable of producing gradients in composition and structure: 

corresponding gradients in mechanical properties can thus be 

achieved. 

For the mechanical properties of some of the materials, 

geometrical configurations pi y an especially important role. 

i 
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^ A good illustration of this is the case of mixtures of poly- 

styrene and polybutadiene in nearly equal proportions.  If 

polystyrene is the continuous phase and polybutadiene the 

dispersed phase, the composite is relatively rigid.  If the 

same volume of polystyrene is present as dispersed particles 

in a matrix of polybutadiene, the material is rubbery.  A 

transition between these two types of configuration requires 

the coexistence of domains of both types thus leading to a 

gradient in structure and properties. 

Applications requiring a gradient in strength properties 

of polymeric materials can readily be envisioned.  For example, 

if a relatively weak material is to be fastened to a structure, 

the region in which the fastener is to be applied should have 

*  higher strength.  This can be achieved by a suitable gradient 

material.  Another example is the provision of a surface layer 

that is resistant to  indentation and abrasion. The case of a 

soft surface layer on a hard substrate, which is of special 

interest for biomedical applications, will be mentioned in the 

.. 

0 
u 
,! next section. 

The damping capacity of polymers, due to their visco- 

elastic nature, is highly trequency-dependent at u  jiven tempera- 

ture.  The usefulness of a polymer as a damping material is 

confined to a limited frequency range. This range may be ex- 

tended by using graded materials (prepared, for instance, by 

copolymerization) each of which has a damping maximum at a 

U       different frequency. Thy gradient in this application must not 

[1 
-11- 
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*>• >t««p in ordor to achisv« ««»l«iun •rr*ctlv«n«M. 

BioaM>diC4il ftoomrtim» 

Two •■••ntial roquirMMnta for bio»«t«rUls aro 

compatibility with blood and tiaauaa and inartnaaa to body 

fluid». Both of thoa« ara aurfaoa propartloa, and h#ncf> can 

ba achiavad by tha uaa of «radiant polyaara.  fill icon» rubber, 

for inatanca, ia a varaatila bionatarial.  How^rar, ita lack 

of rigidity liaita ita ranqa of applicability.  By oaM>inin<| 

ailicona rubber with a rigid baaa «atarial in a contlnuoua 

gradiant, thia liaitation may ba ovarcoaa. Parry' haa analyacd 

machaniaaa of achiaving tha aaaa affact in hydrophilic polynara. 

Giaaay carbon ia known to poaaaaa good bionadical 

propartiaa. Tha poaaibility of forming a gradiant matarial 

conaiating 01 auch polymara haa baen aantionad aarliar.  Such 

a matarial would ba of obvioua intaraat for aoma biomadical 

applicationa. 

Tranaport Propartiaa 

Tha tranaport propartiaa of intaraat hara campt xm*  tha 

alactrlcal conductivity, haat conductivity, and aaaa diffuaivity. 

Each typa of thoao tranaport propartiaa dapanda on tha charactar- 

iatica of tho polymeric ayatam. 

Ganaially polymara ara good alactrical inaulators. 

Howavar, by apacial modification aoma of tham may ba mada into 

aamiconductora.  Tha «mampla of iodina-dopad polyathylana has 

been mentioned aarliar. On tha othar hand, aa inaulatora 

polymara vary in thair dialactric atrangth.  Polymaric ayat« 
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with •?«U«Uy varyln« conductivItUt or dielectric ttrcnqtht 

can b9  obtained by sultebl« qredlonte. 

Sine«, polymer•  «r« poor hoet conductors, thoy are uMd 

M thoreel ineuUtinq MtcrUlc. Thoy arc particularly •ffactivo 

in the for« of r *»•, ••§•, 'ttyrofoaa'. A probl«« ancountared 

in tha uaa of polyaoric foaa as a thoraal insulator for cryoqanio 

fual tanks in rockots has baan do lamination duo to tharaal ahock. 

This difficulty can probably ba ovarcona by tha usa of a «radiant 

■atarial« which ooabinaa In a continuous aannor across Its 

thicknass tha inaulatln« capacity dua to poroaity and oachanical 

strength. 

Many polyaera peralt the diffusion of liquids and «sses 

of low Molecular weight. In ap^licationa in which perMabllity 

Is undesirable, such s polyMsr asy be Made iMperMeable by the 

Introduction of an IMperMeable surf see Isyer. The Isyar May 

confer greater Mechanical strsngth by s grsdlent atructure with 

the bulk. On the other hand, salectiva perMeability for aoae 

substanoea May be uaefui. KsaMplea are polyMeric MeMbranes 

used for ses wster desslinstion or hsModislyels. In such 

instsnees s grsdlent structure Msy iMpart auperior Mechanical 

strsngth and rigidity without risk of dslsMinstion. 

COMbin^ttion of Propartlas 

in the foregoing four aectlons« we hsve been primsrily 

concerned with the spatial vsriatlona of a singls propsrty. 

However, aeveral appücations considered involve the coMbinatlon 

of More than one property. An enaMpla of thia is ths use of 
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polyric totm with vrl^bl. poro.lty .. a thermal In.ulator ' 

in which .ffct. of both th. th.r«al .nd m.chanical property 

gradient, are operative. Application, requiring combination. 

of mechanical propertlea with any of the other properties can | 

wrtelnly be envl.loned.  Coupling of gradient, of various , 

propertle. 1. generally fea.ible. I 
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EFFECT OF STRAIN ON THE FERMI ENERGY 

OF SIMPLE METALS 

R. Corner and R. M. Thomson 

a 
Abstract 

The effect of the strain on the chemical potential 

and work function of a metal is reinvestigated.  The result 

is of some importance for electron emission from metal tips 

under high fields and at crack tips.  The results show that 

11       the chemical potential change is more complex than that pre- 

dicted in an earlier work by Schrieffer and Tiller, but 

usually of the same sign. 
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EFFECT OF STRAIN ON THE FERMI ENERGY 

OF SIMPLE METALS 

R. Corner and R. M. Thomson 

The effect of elastic deformation on the Fermi energy 

of metals is of some relevance to stress corrosion cracking, 

since high stresses and consequently strains may occur at the 

crack tip.  It is also of some interest in connection with 

field emission, and even more, field ionization and field de- 

sorption, since the very high electric fields required for the 

latter cause stresses of the order of 1011 dynes/cm2 and thus 

strains of the order of 6 - 0.02 to 0.05.  The problem has been 

considered by Schrieffer and Tiller1 in terms of the parameters 

of a free electron gas without, however, taking into consideration 

that the deformation changes the lowest energy level of the free 

electron gas, i.e., shifts the bottom of the box.  It turns out 

that this effect is appreciable, and we present here a calcu- 

lation which would be reasonably valid for free electron-like 

metals, i.e., those in the left hand portion of the periodic 

table.  We emphasize at the outset that no attempt has been 

made to calculate the change in surface dipole moment caused 

by the deformation, so that our calculation applies strictly 

only to the inner potential. 

For metals which can be treated by the Wigner-Seitz 

method the average energy per electron is given by2 
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E « eo + 2.21a/r* + 1.2Z2/3/ra - .916/r + W(r ) Rydberg  (1) 

where &0  Is the energy of the lowest electron ie state, 

a ■ m/m* with m* an effective electron mass, Z the valence 

of the atoms of the metal, W a correlation energy, and r the 

radius of a sphere containing just one electron, in Bohr 

unitsi 

(Ij^i re ■ V/ne (2) 
o 

where aH ■ 0.531 A, V the volume of the system, and n the 

number of electrons in it. 

The chemical potential u is defined as 

v' hA 'Eo + [I)"*+ (sK*+ "I1 + 3 s^h) "> 
where 

Ek =  2.21(m/m*)/r2 (4a) 

Ecx  =   (1.2Z2/3   -   .916)/re (4b) 

88 
and w 5 " F+TT^ Uc) e 

where we have used in (4c) the Wigner interpolation form of 

the correlation energy2. 

Let us assume that a piece of metal is compressed 

(dilat a) uniformly and reversibly. The mechanical reversible 

work U done on the system is 

U - Vk,62/2 (5) 
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where k'   is an «ppropriat« Modulus.    Thus,   tti« mnmr^y   incr««»« 

per electron u is 

NTiVI  -  Ac»   ♦  A^  ♦  A1CK  ♦  AW (() 

where v Is the volume per electron« (4/3)««^ r'. Note that u 

Is always positive reqardless of the sign of 6, vhen s systs« 

is deformed from its equilibrium stste. The A's In Bqustlon ft 

refer to the changes in the vsrious terns, defined in Eqs. 4s»o 

when the electron rsdius chsnges.  In sn sb initlo cslculstton 

we could determine the elsstic constsnts of the metsl from 

Eq. 6 if the for.« of ti(r#) were known. We content ourselves 

here with a much more modest approach: we will sssusw the moduli 

to be known and will thus solve for Ac«i 

Ac» - u - A^ - Alcx - AW (7) 

Since the signs of sll but the first terms on the right side 

of Eq. 7 depend on the sign of the strsin* At« csn be positive 

or negative, of course. The change in u  is now found very 

simply from Eq. 3 and 7, 

.fWUMr*  "«Or, 
Au - U(r;)-u(r#) - Ai:,4(5/3)ABk*(4/3)ABCÄ*AW4^l-l^l|£ - r ^j

fl 

- U4(2/3)Atk ♦ ^ AECJt ♦ ^ 
WUl)r;  W(r )r 

which yields in terms of strsin 4 • (r'-r )/r o e  e 
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In ,..n. o( »oull9•• •odolu« k. uä of »ol».o«'« r«Jo 

•e tlut •• I»»» »or ttm HaM "«■ o« tl» ruht of Iq. » 

Tabl« I im« in« Wiult» for potassti». «lupimi». and 

MPM. ba.«d on th. parMfr. Uttad and ■ MlM of v - O.J. 

The offoet of th« u tom U oonaidorabU •• c«i bo »oon fro. 

tho dlfforonco. in tho ol^oluto v.luo. of AM for ton-4lo  C« po.i 

UM ond eooproMiv« U n^ntlvo ttmln).    In tfco enoo of 

tunq.fn tha v.luo. U.tod oro b*-t on on offoctlvo VnUhOO 

of 5.  l.o.. th» i lIlHIM «• li»^«*-    u "i **• ■or# 

eorrnet to •••«»• thnt tho Urgont contribution «»on fro« •- 

olcctronn.  In nhlch HM tho r# voluo for ■ «ooJd bo ^ J.    If 

thin -r. tho enno. tho « tor. -o«ld prndo-innt. to tho •«• nt 

of ohnnqing thn nifn of AM for tonnilo ttrnin.     It -unt bo 

«Sd«* ho-vr that  la tho ca.. of trnimition ootnln port of th. 

^k tor» (or nltornotoly o frnetion of Yo«n,'n -odal-n) oust 

bo ooni9nod te coro corn intornetionn. no thot tho offoctivo k 

.hould undoubtedly bo nonllor thnn th. ovornll v.luo.    Thin 

««ouid tond to d^^»hn.it. th. offoet of tho a tor». 
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Thi. r...*rch MI .«pport^l by th. Adv.nc.d M.-rch 

rro^t. M^ncy of th. O^rt^nt of 0.f.n.. und.r Contract 

Ho.  oMClfOl^-OaSJ *lth m üniv.r«lty of Hlchi^n. 

rTTrilUr Ml «.  •clirl.ff.r. Icript. Hot., 1,  47  (1970). 

a.    1.  M«..  -Th. M»MMiii of Bloctron. in Hot.!.". 
Morth-MolUnd Pro«   UW). 

1 
t 
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JS re - 5 

k - .04xlü12 

TABLE I 

bk  re " 2.1 

Z - 3  k - lxl0,? 

u 
Z = 

. 2 

5k- 5*10l? 

Au AM AH 

A.                1 -0.09 eV -0.95 eV -0.8 eV 

0.2 eV 1.2 2.0 eV 

+   OS -0.06 eV -0.5 -0.3 eV 

• ns 0.1 0.6 0.6 eV 

m -0.1 eV 
T, Ui 

-.01 - l 0.1 

.1 

(Positive Au means a decrease in work function) 

a 
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Change In Work Function with Mechanical ShrpHH 

We consider at first only free-electron like metals 

to which the Wigner-Seitz method can be applied. 

The average energy ßer electron is given (Raimes p. 276, 

Ei. 9.92) by 

! 

a T    * y 
8        rs        \ 

r
a   M 

where a ■ m/m* ■ li   w « -liSJL. 
r +7.8 e 

Z ■ valence of atom 

4 7T r    a3  =.   fn atom)"' 
~     a.. -        ••     -' i.e.,  r8 - atomic ratios  in Bohn t " »• *i "   I^-P^J 

units,  aH -  .53A. 

re - r8/Z>/« 

Therefore,   in terms of r 
e 

e ^T    re      re      e, o     -e 

The chemical potential is defined as 

'3E. 
r»r 

TIT" 
'3nE(r ) 
 1 e 
"5n e 

E(re) + 

"e(^)vft)v 

(2) 

To find 
3r 

4 " aÄ re " V/ne 
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im 

.. 

.. 

0 
Q 

3r 

3£ 

n* e 

1 
TnaJF7 

V "e 

'e e    »ira'r: 
V    n 

TrP V 
re 

r'r 
«7 

.       .    \21   ,   l^Z'/'        .916 .88 
r_ r. r_+7.8 e 

.88r .   2   2.21   .   1   1.2Zg/3       1   .916       1 

eo  + ! Ek + f Ecx + W 1 + 
.33r e 
r  +7.8 e 

where E     . 1,21 . lijg^l - 441 ,     w ^§8 
e e e e 

Now a strain,  caused by mechanical work increases nE{re)   ■ 

Er,r by AU « vjc
,sV2   (6  « strain;   k = modulus).     Thus  if v » 

volume per electron 

. 

AU » v k -2/2 ■ AEO + AE. + AE,,,, + AW 

where A = f r ') - f(r ) with r ' referring to effect in the 
w 6 €• 

electron radius for the strained system.  Thus, 

Aeo - AU - AE. - &&       - AW 
Jx CX 

ü 
Ü 

: 

a 

Whence 

Aeo + T AE. 
+ i 

.aaw'ri 
AEcx + AW + FT+TTT 

e 

•33Wre 
r_+7.6 

AU - Alj. - AECX - AW + 

AM = AU + 4 AE J  k  J  ex AE, 
.saw'r^ 

+ r'+7.6 e 

.33WtQ 

FTTTff 
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2   l 2 

k6V2 + .66 x 2.21 1^2     + .4Z' /I 
r-r'] _ 305 r-r" r'r 

Ay 

.293  [r'-r 1 , . .293 Ar 

Ar'2   .4Z2/3Ar . .305Ar   .293Ar 
öV2 +1.47 - äIJä - i^yj— + —j-5— Hrfrrp 

where we have approximated 

2_r • 2 r'-r 2r Ar 2Ar 

A(r2) 
would be better as pr^ 

Air 
2 « vek6

2/2 - 1.47 l^r + || .305 - .4Z
2/3 

.  .293 Ar 

AM - MV8 - 1.47 AJE-^ - ^(.4Z
2/s-.3) - (^.^2 

We need now a relation between AU and Ar 

First ve - I ^ aÄ ri 

;. Ave - 4 TT a^ r^ 

Av Ar. 
and 

e   - —e     -i     ov   -jx  •   s —1 . 3 -^    also,  — - 36  .. —- 
Ar e = 6 
e 

Av 
. v. 

per unit volume, AU for comprssssive stress is  ^ (l-vj 

where k * Young's modulus, and v » Poisson's ratio ^.3 

.'. AU/electron is 
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" 7 ^ aÄ re ^   (9>  ST[l 

AU  -   4x3.14x(.53)3xlO-"*x9     v, 

j n «J k'   (9)  r Ar'      in ergj 

To convert to Rydberg 

PPltlKWft k,exponenti    ^m^1 

= 2.6X10-13 k«   re(Are)2 - 2.6xlO-1J k»  r^ Ö2  Rydberg 

AU-vek.(^)2 ^..36 

- vö k'   962 
6 

I* 3k «2 
ve 2(l-2v)  ö er98 

Ve^lO-11      3k 

TTg  2(l-iv)   62      Ry^erg 

ve ' gxlOMz    - pM2  " metal dan9ity 

(PM/Z)k'   9Ö2 

"    Aü " b.62+löa»xJ.Sxlö-!I      Rydberg 

(PM/Z k«   Ö2   x  5.3  x   IO"11 

2.6X10-13  k r1 

Aü a(i-2v)   e  62 
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Ut v -  .3 

Now 

• l.l«10-,, k r^ «'    -    UllkAt>a}t* I1 

.29r 

r_   -   2 I -  1 

^t        6   -   ♦.! yfcrj >   2 

Au - l.lx8»2".01 - 1^4Z',^1 - ilBiJ . \l9Ul 
2       2    TfTtl» 

.16     - ,074   - .005 

6  - ♦.05 

Aw - .16/4      - .037   -.0025 • .0005 Rydtorg 

.006«V 

'or    Al    ^ . .14 

'5.0  K    3»    k - .011    45 oM - .86 

2.1 Al   27    k - 1      10/3 pM - 2.7 

2.02 *   184    k - 5   (8.9/5) p - 18.3 
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v# A, - .74-io-MvA)»/» 

■ 1.410/11'/» 

.. I k ^ lO'» - .04 r# - 5 

4M-.0044.12S4'-ii|l7T||rr-46.li|d 

• .»5 4» -  .lit   Hlm  -  .024  ♦  .00924 

for 4 - 4.1   (diUtlon) for 4 - -.1   (coapruiion) 

4II  •   .0055  -  .0090 -   .002 -   .0009 .0153  Rydberq 

• ».0041 Rydborg    • -.QiSaV .   .fV ♦  .2«v/ 

for 4 ■ «-.05 

4ii -  .0013 -  .0005 -  .001 •  .0005 

• .0050 Rydborg      ■  .04«V 

k - 1        rs - 2.1        i - 3 

4M -  .11.9.14«  - ijl« 7IiTTT .   ii   2.0i.J , 

for 4 ' ♦.! 

4|i  -  .01  -   .0545       .0254 • -.07  Rydb.»rq    -  -.15«V 
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for  A • 0.1 

tu  "  ,096  Rydbarg    *  \.2nV 

A  -   .05 

.0025 -   ,0)1  -   .012 - p..04 Rydbery      - iiüftY 

6 - -.05 frW Rydb«rq      - *.&& 

k-5        rg"2 z"5 

mm   m»§ 2.94 6 .87    , 

«.46«  -  .735   ffal '  •4356 

for 6 - +.1 

An -  .044 -   .06 -   .043 - -.05 Rydberg      ■ -jjaü 

A - -.1 

for  6  -   .05 

ÄU -  .011  -   .033 -   .0217 - -.024  Rydberg      - -t???V 

A m -.05 .046 Rydberg      - •♦••62eV 

for A •  .01 

Au - .00044 - .0072 - .0044 - -.011 Rydberc/ V 
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NOTE ON DENSITY DETERMINATIONS 

ON AMORPHOUS MATERIALS 

Robert Gomer 

Abstract 

A possible method of measuring the density of amorphous 

films is described. 
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NOTE ON DENSITY DETERMINATIONS 

OF AMORPHOUS MATERIALS 

Robert Comer 

It appears that the determination of the density of 

amorphous films, for example of Ge, is of some importanco 

in the interpretation of the optical electrical and structural 

properties of such materials.  The following scheme may be 

useful in this connection.  In order to determine the density 

it suffices to know the mass and volume of the film.  The 

former can be determined with great accuracy and sensitivity 

by moans of a quartz oscillator microbalanco1.  The volume 

can be obtained from a knowledge of the area of the quartz 

crystal onto which the film is evaporated or sputtered and 

the thickness of the film.  If the film is thin enough for 

optical transmission its thickness can be determined accurately 

by ellipsometry2. 

For opaque (but reflecting) films interferometric 

techniques also exist3 for determining film thickness.  In 

order to compensate for the roughness of the original quartz 
o 

surface, which may well be of the order of 1000A, it might 

be necessary to evaporate a pre-deposit of this order of. 

thickness, of the material to be studied, heat it to near 

melting, and thus obtain an artificially smoothed surface. 

If a mask of somewhat smaller dimensions is now put in front 

-30- 



of the quartz crysLal, the weight and additional thickness of 

any further deposit may be determined with respect to the 

smoothed substrate.  The degree of roughness of the original 

quartz and of the smoothed surface can of course be determined 

interferometrically. 
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NODIPXUU NULL-FLUX MAGNETIC HUSPENSION 
AND PROPULSIUN SYSTEM FOR IIIOH-SPKKO TRANSPORTATION 

M. Tinkhain and P. L» Richard« 

^■trf?^ 

A detailed Fourier analysis is 9ivan of a now hybrid 

system for magnetic suspension and propulsion of high-speed 

trains ("300 mph). The hybrid system combines the advantages 

of null«flux (low drag and feasible synchronous propulsion) 

with those of the image-force schesM (a cheap smooth track» 

typically 1/4- aluminum sheet)} its disadvantage is that it 

requires a double set of opposing train magnets (as does one 

of the null-flux system already proposed Ly Powell and Danby). 

The analysis shows that a drag/lift ratio as low as 1/10 should 

be obtained with reaisonable parameter values* far superior to 

any simple image-force system, and much less than air drag 

over the useful speed range.  Another advantage of this systesi 

to the image-force scheme is that its strong magnets facilitate 

synchronous propulsion.  It is shown that the active track re- 

quired for this propulsion could be energised in sections of 

several miles without undue power loss.  The stability of this 

A drive is studied, and shown to offer no serious problems for 

•t       small fluctuations, but there may be a serious problem in main- 

ftniiil PHI IM 
-33- 



I 
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AND PROFULSION SYSTEM POR HIGH-SPEED TRANSPORTATION 
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Introduction 

Richard, and Tinkhan have pre.entod an analysis« of 

magnetic ievitation of high speed trains which compared two 

proposed systems: 1) a periodic array of magnets moving over 

a conducting ground piano (the "image-force" scheme) and, 

2) the Powell-Danby "null-flux" scheme.  The latter uses a 

symmetric system of coupled ooils for the track to obtain 

lower drag, but at the expense of a more complicated track 

which would Increase costs to some degree as well as introduce 

a certain amount of vibration in the suspension. 

It has been suggested" that a modified null-flux 

scheme using a thin conducting sheet (rather than coild) 

\   between two sets of opposing train magnets might combine the 

low-drag feature of the null-flUx scheme with the simple smooth 

<r.ck construction of the ground ,lane scheme, at the expense 

ot ••oublin, the magnet reguirement on O. train.  Since there 

-ill b. hundred, of miles of track, and relatively few trains, 

•uch a tr.d«,ff could be gulte attractive. A further advantage 

of th. null-flux schemes is that synchronous propulsion by an 

active track is facilitated by the stronger magnets which such 

.cheme. u.. to get a stiffer, lower-drag suspension than is 

f...ible in image-force .u.pensions.  slnce dc 8uperconducting 

magnets use no power, it is evidently desirable to capitalize 

*La«t year's ARPA Report. 

'Z££u!Stjr*   (,"JitZ "■d »o-'orta,, indirect private 
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on the cheap availability of such strong fields. 

In this report, we present results of an analysis of 

this modified null-flux scheme which confirms that -ach a 

scheme offers some very desirable features. 

General Expressions for Lift and Drag Forces 

We assume throughout that all fields vary as c 
ikx 

with k ■ 2TT/ä .Ä being the magnet period.  Then the lift and 

drag forces per unit area are given by 

•-H 
FD = Fx = - Re 

J * B dz 
y x 

J * B dz 
y  z 

where r.m.s. values are implied throurhc t, and the integration 

is through the thickness of the conducting sheet.  It is con- 

venient to re-oxpress these results in terms of the field only, 

using Maxwell's equations VxB = -jr ^ and ?•! - 0.  Thus 

4TT 
Re 

3B * 

-if-+ ikV Bxdz 

3 " S? J\37'Bx 
2 + 2Re ikbz* 

fl 3Bzj\ dz 

8TT 
d 

- ffe   B. 

B 

-  B. 

I')' + |Bzl'!dz 

+  B. -  B. zu ] 8TI I ' xJc'    ' xu1    ' zi 

where i,u  refer to tne lower and upper sides of the plate. 
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This resUlt oould be written ^ by ^^^^^ M wie ^^ 

ence in the magnetlc preS3Ures on ^ ^ sides ^ ^ ^ ^ 

Under all useful regimes, la I « I» I .* *., 1 2'    'Bx' at the surface, so that 
this can be simplified to 

P ■  BaJ   ' xu' 
87r (i) 

•#«-v^    . (la) 
where ^  :. (^.^ measuros fch# net ^^ ^ ^ ^^ 

and Bx ä (BxÄ+Bxu)/2 is the appropriate average field. 

Similarly, the drag force is 

FD = [k]   »•/ [j^ *  ikBz*]B2 dz   , 

The second term is purely imaginary and drops out.  Using " 

^•B - 0 and the skin effect equation 

where 

the first ter. can be transfcr.ea so that, after droppin, an ! 

binary term and dropping the „inus siSn to get the magnitude 
of the force, we have 

fl 

fl 
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rrrk6::   J ' Fr,   ■   T-TT^r        B      *   dz D       2rrk6':   I '   z1 

^     lDzi2  d2 (2) 

. Ju JL <|B   \2> , (2a) 
2it  v       '   z'       av 

Ü 

where v = cs/2Trad is the characteristic velocity (~15 mph for 

a 1/4" aluminum plate) introduced in our previous report.  This 

result can be obtained more simply (but with loss of sign infor- 

mation) by considering the power dissipation oE 2dz, where 

E = (v/c) B , and equating it to Fnv. 

The results (1) and (2) are general formal results, 

not limited to the thin sheet case. 

Determination of Fields 

The fields in the sheet are determined by matching them 

to the external fields at the boundaries.  These external fields, 

being periodic in x, are exponential in z, and have the general 

form 

B = B^e1" + B e"kz 

The magnet currents uniquely determine the strength of the term 

which decays toward the sheet.  This, in turn, fixes a linear 

combination of the field and its derivative.  For example, 

If we specify the strength of the source in terms of the field 

-39- 



M    - B0.   ThU8, the fleld8 ju8t out8ido the 

lew. surges ,at . . ,d/2) must „„^ 

n . 1 dBl        -Jch B + IT J?  ■ 2B e  u . b 

u _ 1 dBl    „   -khp (3) 

Using div | and curl ß = 0  »• - i*m ü' ß2 « -ikDx and B' = ikQ 

Eliminating the normal derivatives in thi.  
X 

 **.. eB  ln thls way' the boundary 
conditions become y 

BVI, + iB  = b xu    zu   u    ' 

(3a) B
vp - iB n = K XÄ      Zi "^ • 

The conditions (3a) are mnr« „ 
are more convenient that (3), since t i. 

continuous across the boundarv wh 
boundary, whereas dBx/dz is not. 

We now must find the f<oi/i i     .. 

wuh... boundary oondU nr o r
de the 'heet— 

<*ey  the  eguatJon 00n,POnentS 0f **  '^ ) 

so that 

^ = (^ + k'|. ■ # 
'2 k = lii .. ...I..   2i 

B   ' 

since (k6)2 « (27rö/£ )? ia .  .  ,, 
x>  - typically g i%.  The solutions 
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this ■«cond-order differantial equation havo two adjustable 

constantu, which can be taken to bo tho value and slope at 

s ■ o# tho midpl.ini* of the sheet. Then the solutions havo 

thu form 

Mn - b(o) i ♦ if;. ^^... 

Moreover, the Maxwell equations relate the x and s components 

as followst 

Di • (^ *ikd) V ■ Jji s * iM 

Ü
2 " ■lk DX     ' ($b) 

where aqaxn wo havo dropped kd compared to v/v . since for 

useful ranges of parameter values, kdv /v t  0.01. Thus, the 

internal fields are completely specified by any suitable pair 

of parameters among the set ^(0), B1(0)# U (0), B^(0). 

In applying tho boundary condition (3a) to determine 

those parameters, it is convenient to form the sum and differ- 

ence: 

b •»- b. • (U  ♦ D .) + i (B  - B .)   i u   t        * xu   xt      IU   si'   * 
(7) 

b  - b. - (Fl   - B .) + i (B   -»!>.)   i u    I xu   xt      zu    zt * 

or, using (5) and carrying only the leading terms in d'/A7 
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bu  ♦ bt •  28X(0)(X  •  ldV44')   ♦   IBJdd   ♦  id'/UA'). 

»»u - W  -  l.;(0)d(l   ♦  IdVU*')   •  21^(0X1   |   ldV4A'). 

tmpUcinq the doriv.tiv«. u«lm,   (6),  thin bocomo. 

«>u ♦ b4 . 2l.x(0)(l ♦ 4dV44')  • WU^OXl  •  Id'/UA',. 

• 2B>t(0)(l  ♦id'^')       , (8a) 

•inc« kd <<   1.     Similarly, ono find« 

H~,  If « dreP th. corr.ctlon t.™. i„ „•/«',   («,  ,,«,. to 

th* timplm results: 

b  (0)  -  y, M     ', • 2W/v*lJ (»I 

which co-pl.tc.y lm the  fi.,.,   UlK) „„„ m torc#)   ta 

t.™. „, th. .ource .tr.^th. ^ „,.    8lnc. ,„,.„., .),„ln.tlon 

of th. .f,«t. of th. a'/.' t.nM .ho.. th.t mm l..d to 
corroction.  In th. fore, which .r. tyPic.Uy s<,Vl04'. w. ... 
P~t th... ..«pu r..uU. [0 ^ ^^ r#iiabip ^ ^ M ^ 

Altho«,h the d.t.i.ed .onsul.tion given here i. „.^ to ln. 

v..ti,.t. how ,oo.l „a. .«.ro.i.s.tion i., tho.o .i^,. re.u.t. 

Ch b. oUfinod by  mntUmi,  «re eies^m.ry -..„.. 
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Computation of Forces 

Usin^ (1) anU carrying only loading terms, the lift 

force F. can be written 

rL ' Tir '^ "I A,,x ' A nv V0**  Ui(0) 

(10) 
v (bu-bt) 

■ vzrr- Ro(b ♦bj*     Jj ,; 
O 0 

b  »-b  ' - u Zi       i 

(Th« change in sign convention relative to (1) arises since we 

want the lift force on the magnet structure, not the track.) 

We take bu and Ut   as real, which can be done no long ns the 

upper and lower magnet structures ^re not relatively displaced 

along the x-axis.  In view of the definitions of bu and b^ in 

(3), we see that this reduces to our earlier result for the 

•ingle-sided caset 

rL 
Bo'    •■2lth ' 

.ln,U- ' *" T^^TT ■ T^0-W 
(11> 

tided 

(The old   formula  had  D  '/O  rather  than  D  '/2fl  because  I    was o o o 
a peak  value;   here  it   is an RMS value. 

How  lot us consider  instead of a symmetric arraigement, 

one with displacement ill from the symmetry plane,   the configu- 

ration which provided the motivation for this analysis.     Then 
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BO that 

-k(h -Ah) 

^u ' 2Boe 

-k(h +Ah) 

h '  2Boe 

B 2 

F . _o_ e"2kho ?ink.2^h H i B 
2o-2kh0  kAh 

-  F'» l+v0Vv2 

(12) 

(13) 

since kAh will be small in reasonable applications.  As expected 

in a null-flux geometry, the lift force increases linearly with 

the displacement from the symmetry plane. 

Using (2), the drag force is 

d/2 
F 1       V.   <|B     i2> 

-d/2 0       -d/2 

■  hv'     lBz{0)l2   +   |B'(0)|2   dVl2 
0 " 

D ■   27^     lDz(0H2   +iTf|Bx(0)|2 , (14) 

i I    v      (bu"b^)2   . k2d7    ,K  XK   ., 80    F
D " 57 T;   I^VVV0

;
 
+ "TT ^u^Ä*   • (15) 

Again, this reduces properly to the usual single-sided result 

if one sets b^ » o and drops the negligible term in k2d2.  But 

for the nearly symmetric case, this term cannot be dropped 

since it provides irreducible minimum drag even when b = b . 
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Using (12), the drag force becomes 

F = 1 2 " klo v_ sinh2 kAh  k^df.   .2 ... fD    TT  oe       v    i+vvv 2   + nrr^cosn  KAn 
0 '     0 

~  1  B^e"2^0 X.    feilMl     +  k2dZ (16i 
7T    BOa V"       1+VVV    2    +   "IT" ' a6, 

0 '     0 

for small displacements Ah. 

To carry the analysis further, it is convenient to 

examine the drag normalized to the lift, which will of necessity 

have the constant value Mg, whore M is the mass/area of the 

train.  (This is just the reciprocal of tho more commonly used 

lift-to-drag ratio.)  Combining (13) and (16), we have 

*D _ X k2(Ah)2 4   k
2d2  1+vo2/v2 

F  ' v  l+v2/v * ■,' 12    kAH 
Jj     0 0 

- \cAh    i +   d2   vo . kd2  v 
" kAh 1 + 12 (Ah) 2 v + UKK vj" 

In the useful regime where v > v and d < Ah, the correjtion 

term d2/12(Ah)2 is always small.  Thus we can write 

FD -  VAh V0  I  kd2    V /T7V FT = kAh T + TTEh  r     ' (17) 
L 0 

This normalized drag has a minimum value 

at a characteristic velocity 

V = 2/3 vo -j- = — -5^2- ^ 50 m.p.h. (19) 
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VFL 1 
v     vj (20) 

for v  >>  v(, ,   can be written 

t 
i 

(The representative values quoted are for a 1/4" aluminum 

sheet, a magnet period of 6 feet, and Ah ~ 1/4".)  Thus, (17) 

has the normalized form 

Note that the drag is within 25% of its minimum value 

over the velocity range from V/2 to 2V.  Thus, if 2V were 

chosen to be the full speed of the train, say 300 mph, then 

the drag from 75 mph to 300 mph would be nearly constant and 

well below the air resistance over most of this range of 

velocity.  Even down at 30 mph, where v -   2v , so that F0 has 

reached 80% of its high-speed value, allowing the magnetic 

suspension to take over from the wheels, the drag would be only 

about 3 times its minimuri value, giving a very acceptable lift/ 

drag ratio of about 25.  On tho other hand, the lower value of 

V in the above example has the advantage of lowering the mag- 

netic drag at low velocities (where it is the dominant drag), 

while allowing it to rise at higher velocities, where it will 

still be dominated by air drag.  This is illustrated in Figure 1. 

i 

i Magnet Requirements 

The above very favorable estimates hinge on the 

assumption that the magnet strength required by Ah ■ 1/4" is 

reasonable.  This is determined by tho relation (13), which. 

.1 
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M9 ■ FL ■ fm  kAh    , (21) 

whore 
-2kli 

f. - (2/n) Ur/o    
0     . (21.) 

In this, Uo is the rma Htmncjth of thu funü.tmontal Pourior 

component of tho x [or z)  component of tho field in Hie nuKjnot 

plane, and ho is half the separation of tho upper and lower 

magnet conductors.  Uo# in turn, is (2Vc) Q , whore Q is the 

rms value of the fundamental Fourier component of the magent 

current. That is 

o 

(The curious factor 2//3 is inserted to take account of the 

exiMtence of o<|u.il components e111* in tho real field, and to 

convert to rms values.)  A simple example is a sequence of 

magnet loops '*x/2) long, producing alternately up and down 

fields.  If the current in each if I , the transverse« currents 

^dd, and are equivalent to currents '21 spaced l /2 apart. 

Then 

Do - 'f* ir ■ ^ kio/c     . (2j) 

Thus Uo is simply proportional to the trannvnrse magnet current 

per unit length of train.  From (21) we have 

-2kh 
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Holding B0 (i.«.f the avorag« current density elonq the trein) 

constant «rhiie veryin« k, the nlniMum /Vh (i.e., tit« stronqeet 

lift) is found Cor 

k - %h0   or   tnm  4.h0    , (25) 

for which case 

Ah 
,0 h K" " "• FT   • (26) 

It is worth notinq that for this value of k, the fundamental 

Fourier cosiponent accounts for about 87t of the total lift. 

Hence the sinqle Fourier conponent approximation should be 

quite qood# even for this sirq>le current pattern, so lonq as 

tK  is not qroater than 4»h0.  If we separated the successive 

loops by tx/6 (as outlined in the appendix of our earlier 

report) to cancel the Ird harmonic content, the fundamental 

component would qive about 98% of :he lift at this spacing 

(tÄ - 4i»h0).  If we now take a reasonablo maqnot current 

X0 - 300.000 amperes, ü0 ■ 35.000 Gauss/ejc (feet) -  6.000 

Gauss.  Assume a weight of 100.000 lbs. supported by a magnet 

structure 100 feet long and 3 feet wide; then Mg ■ 160.000 

dynes/cm'. Using (26). we find 

IT  
0-04 ' 

o (27) 

0 
so that Ah - 0.04ho - 0.04*^/4» - 0,2-. very near our donign 

target.  Thus, there suems to be no difficulty in finding a 

I 
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roaionabln combination of parameter values. 

uptimitation of Parameter» 

Now Ut u» explore the poasibilitles for optimizing 

the parameter choicea« aubject to the constraints of the 

problem.  Thjso include the following: the minimum drag ve- 

locity V should have a set value in the range 50-150 mph. 

Since V "• Ah/od'# this combination is thus constrained.  For 

given B and Mg. Ah - i g^ 9—~  . To avoid excess harmonic 

content, with its higher drag/lift, we require -jf - Sc ^ 4T'ho' 

the value giving maximum lift for a given D0.  Subject to 

these constraints, we want ^o minimize (FD/
F
L)lmin " /r 

by 

varying d, a,  h0. Ah. 

Making appropriate substitution, we have 

kd  vie' Ah ■ — « k 

min  r# »^TtOV 

Mq c7   ke 
2kh0^ 

B 2 2/J o V v o 

(28) 

Clearly this would bo minimized by making k as small 

as possible.  But if k • l/(2h0), the harmonic components of 

the fiold increase the drag, and also the lift for given Bo 

falls off.  Thus, wu are limited by that value, which also 

has the dosiraule property of giving maximum lift.  Thus: 

S 

L'min 

Mq e C 

B 2 4/1 h oV o      o 

According to this, one could lower the drag indefinitely by 
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increasing h .  But this is limited by the fact that we have 

neglected the effect of the finite width of the magnet structure, 

which limits the validity of our one-dimensional solution.  As 

shown in the Appendix of this report, however, the one- 

dimensional solution is quite a good approximation so  long as 

w > U. /2   2flh , where w is the width of the magnet in the y- 

direction.  Thus, we want to have h  < w/2ir.  The width also 

affects the weight Mg per unit area of magnet, since M'g = wMg, 

the weight per unit length of train, is really the fixed 

quantity.  Using these considerations, (29) becomes 

(30) 

If w is limited to "3 feet, the values used in our numerical 

estimates U  = 6 feet, h » 6 inches, Ah « 0.25 .Inches, 

V = 50 mph, ü (aluminum) effectively reachoi. I his absoluU» 

limit for any given (M'g/L^7). 

Summarising the optimum design relatlonst 

Ä/2 • 2TThn =■ w    , (31) 

so the coils are approximately square.  With these relations, 

^ « | |1|   , (32) 

FD > 

min 

n  e    M'g  c2 

FL 12/5 V  oVw?i 

Of course, consideraf ions of overall Hy;5tem optimization need 

not coincide witli minimizing the maynotic drag .ilono.  l-'or 
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ample, efficient synchronous propulsion favors a slightly ex 

smaller value of l^. 

n        Linear Synchronous Propulsion 

We can take advantage of the powerful magnets in the 

train to make a simple, efficient linear synchronous drive 

system using an active track structure to produce a traveling 

magnetic field which pulls the train magnets along.  The phase 

0        velocity vA of the field is vA , where v is the frequency of 
f 

the field and I is its spatial period (the same as that of 

the train magnetri).  II we restrict attention for simplicity 

to a single-phaso drive, the track winding could have the form 

indicated in Figure 2. A current I makes a complete circuit, 

out and back, from a source at one end. 

For a specific example, let us assume £x ■ 2w, so the 

loops are square.  In that case, the total length of conductor 

is 4x the length of track.  If the conductor were 1" * 1" square 

aluminum bus bar, for example, the round trip resistance would 

be ~0.25U/mile of track.  For comparison, a typical effective 

train resistance is 1.5U (corresponding to O.lg drive force 

at 300 mph, which requires 6MW, and assuming a drive current of 

2000 amperes.) Thus, with such a heavy conductor, track losses 

would be less than the useful power even in a track segment 

extending for 5 miles in either direction from a power source. 

The track inductance will be -0.006 H/mile, which gives a 

reactance of -2.5U/milo at 60 Hz, a representative drive 
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frequency (corresponding to 250 mph and Ä. = 6 feet).  Thus, 

In a track run of a mile or more, the inductive reactance 

would dominate the impedance seen by the source despite the 

load due to the train, giving a poor power factor and requir- 

ing a high source voltage.  These considerations might make 

relatively short runs, using thinner drive loop conductor, 

supplied with power by high impedance transmission lines through 

step-down transformers, and of course only switched on when a 

train is passing over the section, more economical in terms of 

total costs.  In any case, it seems almost certain that the 

track inductance will effectively filter out any harmonic con- 

tent in the output of the variable-frequency power source, so 

that the drive current may be assumed to be a pure sine wave. 

The instantaneous drive force on the train is equal 

and opposite to the total force exerted on the track loop con- 

ductors by the field of the train magnets.  Because the spatial 

period of track currents and train field is the same, the force 

on each track conductor is the same.  Thus, we may restrict 

attention to a single one, of length w, carrying a current I 

in the y-direction.  Since the local drive force is F = I B /c, 

the total force per conductor is (I/c) /B dy = I wB /c, where z        z 

B is the spatial average of the field of tl.e train magent along 
Z 

the track conductor.  Since I(t) is a pure sine wave, only the 

fundamental component in the Fourier analysis of B (t) (which z 

arises from the fundamental spatial iourior component) gives a 

■ 

0 
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non-zero time average in the product.  Thus, we can write the 

time-averaged propulsion force per conductor as 

r ■ I 1(»J B ((D)  COS 4»  # 
P  0 rms z,rms 

where | is the phase angle between the current and field, and 

(jü = kv = 2ITV/£ for synchronous operation. 

In our simple Fourier analysis of the fields, we have 

no variation of ö with y, so that RMS values are given by 

kl 
5 = U = 13 e"kh = 4/2 —S G-

kh    , (34) 
2     Z     O C 

where B specifies the train magnet strength in its own plane 

and I  is the current in the train magnet loops (as discussed 

earlier) and h is the separation of the magnet plane from the 

plane of the track currents.  Thus, the average propuxsive 

force per track conductor is 

— Ich 
F = 4 J3H1S}  II   cos (1^    . 135) 
p       c2     o rms    ' 

This result may appear unfamiliar because of the exponential 

dependence arising from the Fourier analysis.  However, if one 

takes the separation h to be the same as the h - l/2k, which 

-kh was optimum for the levitation case, then the factor ke 

=  ■ST— , and one recovers the more familiar form F ~ I  I
rms w/h. 

Since the actual conductor array in the train magnets 

does not extend to y = i», as assumed in the simple model, but 

rather consists of approximately square loops, one might 

question the quantitative reliability of (34) as an expression 
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for the strength of the fundamental Fourier component of B . 

To test this, we have developed an exact formula (see Appendix) 

for B from a rectangular current loop of the same width w, and 
z 

we have numerically estimated the strength of the fundamental 

and third harmonic Fourier components for the special case of a 

series of square loops.  The results indicate that the Fourier 

coefficients computed for these two different current patterns 

differ by only about 10%. 

Some insight into this result is given by the following 

observations:  The field in the center of a square loop of edge 

w carrying current I is 8/2 I/cw whereas the field midway between 

two infinite straight wires separated by w and carrying I is only 

8 I/cw.  Thus, closing the loop gives a higher f'eld than ex- 

tending the parallel wires to infinity.  On the other hand, if 

we take account of the presence of two wires on each side 

(because of the contiguous loops), the parallel wires given 

16 I/cw.  Similarly, taking account of the two adjacent loops 

(by a oipole approximation) in the loop configuration, each 

contributes y/w3 == I w2/cw3 ■ I/cw, for a total of (8/2 + 2) I/cw 

• 13.3 I/cw.  If we continue both ..'alculations to convergence 

for an infinite series of parallel wires or square loopH, the 

result« are  12.r) I/cw and -13.1 I/cw, reRpoctively, aqain 

differing by less than 10'i, 

Returning now to the  real case, in which we are inter- 

ested in the strength of the fundamental Fourier component 

averaged over the width w in a plane separated from the magnet 
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plane by a distancu h, rather than the value of the field at 

the single point in the center of a loop, the corresponding 

numerical results are ~15 I/cw for the parallel wires and 

-17 I/cw for the square loops.  (In these estimates we have 

taken h ■ w/6, a typical value; also, they must be reduced by 

a factor of /2 to correspond to the RMS value (34).]  The fact 

that these coefficients are greater by some 30% than those 

found above reflects the fact that the third harmonic amplitude 

is -1/3 the fundamental amplitude, and the third harmonic tends 

to cancel midway between conductors, while adding to the funda- 

mental near either side.  This causes the field to sag in the 

middle, as indicated in Figure 2(b).  We conclude that for a 

typical geometry the simple Fourier analysis result may under- 

estimate the. drive force by -10%, but that it is good enough 

for preliminary estimates. 

For these estimates, it is convenient to characterize 

the propulsive force F by an equivalent acceleration g'. If 

M1 is the mass of the train per unit length, then 

M'g' = F r- 
r x 

or 

at       32Tr/2w -2llh/£x Vrms _D . ,,fiv 
g  " FTgT-S- e        T— cos ♦     • (36) 

Taking the reasonable values M'g = 100,000 lbs/100 feet, 

w = 3 feet, Ä  = 6 feet, h = 6 inches, I  ■ 300,000 amperes, 

this leads to 
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2- - 0.5 * 10-" I   (amp«) co« l . (36.i) g rmu 

Thus, a drive current of 2000 ampcreB would provide up to 

tO.lg, depending on tiie phase of the train mugnets relative 

to the current in the track.  Evidently the drive current re- 

quirement could be reduced further by increauing the width (w) 

or strength of the train magnets (I ) or by reducing I and/or 

h.  For a typical clearance h ■ w/2Tr between train and track, 

given train current density (I./A,,) » and given track dissipation 

per mile -if (1 + 2w/Ä ), the spacing fc giving maximum pro- r rms        x x 

pulsion is £ ■ Tw « 2/2-nh.     This is not very different from 

the condition (25), Ä.  ■ 4Tih_, for maximum lift at separation 
x     o 

h  between magnets and the conducting plane.  Thus, if h0  h, 
0 

as is reasonable, the same value of I will be close to being 

optimal for Doth lift and propulsion. 

Transverse Stability 

The tight magnetic suspension of the wide magnet coils        ■' 

all along the train will provide a very strong restoring force 

against uniform vertical motion, pitch, and roll. 

A magnetic restoring force against uniform sidewise 

motion and yavv can be established by vertical conductors along 
'■ 

the edges of the conducting sheet track as shown in Figure 3. 

Since this conductor would not enjoy the benefit of a null-flux 

configuration, its contribution to the drag will be significant 

if the restoring force is made very strong.  This drag contri- 

.1 

.1 
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trlbutlon can  bu «utimutod as follows:  The forco F will vary y 

as o2ky.  Thu«, 

1 dFy 
^ a/ " 2k       " 

The associated drag force (assuming the vertical conductor is 

thicker than the skin depth 6) will be given by 

fD " 
kA Fy 

drawing on tho ruoults of our previous report.  Thus 

dF    2 

3/ 9 rD F, 

If we want a restoring force to give an acceleration g* at 

displacement Ay from equilibrium, we have 

Mg' = f FD Ay 

Dividing by the weight of the train, and rearranging, we have 

!£ =  *  al   . (37) 
FL  2Ay g 

Taking the representative values 5 = 0.4" and g'/g = 0.2 for 

a maximum excursion of Ay ■ 4", this gives FD/FL = 1/100. 

Since this drag would double (because 6 doubles) on reducing 

the speed from 300 mph to 75 mph, this draq is not negligible. 

A carefu. analysis should be made to find how strong the re- 

storing force must be for proper operation.  If the drag from 

this form of lateral stability scheme is excessive, one could 
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instead derive the restoring force from a more complex arrange- 

ment of null-flux cDnductors.  For example, one could use a 

pair of magnet arrays, canted up from the horizontal on either 

side of the center line, to derive a centering force from 

gravity.  Alternatively, one could use a separata null-flux 

arrangement with vertica] coils to provide a transverse re- 

storing force.  This scheme has the attractive feature that the 

drag would be essentially zero in the centered position, and 

considerably smaller than (37) when a restoring force was 

generated in an off-center position. 

Longitudinal Stability 

It is well-known that there is a potential instability 

associated with a drag force which decreases with increasing 

velocity.  In general, we have 

N & ■ r - F (v) dt    p   rDlv'      ' (38) 

where Fp and FD are the propulsion and drag forces, respectively.      '' 

If one attempts to maintain a constant velocity v' by setting 

Fp ■ Fj^v'), we have, for small changes in velocity, 

dv 
M ^t ' Fp " FD(V,) " F^VMv-v') 

Now, if Fp remains constant, this leads to 

M d(v-v,)/dt = -F^v') (v-v') 

so that 
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(v-v') ~et/T    , (39) 

tm where the time constant T is given by 

t = -M/FMv')    . (39a) 
ma tf 

Thus fluctuations in velocity will grow exponentially if 

T > 0; that is, if F^v") < 0, as is always the case for the 

magnetic drag in conventional image-force or null-flux schemes. 

In our hybrid scheine, however, the magnetic drag increases for 

v > V.  When the air drag is added inf all these systems become 

stable in this sense at sufficiently high velocities.  The hybrid 

scheme is again most favorable, becoming stable somewhat below 

V, which might be ~50 mph.  In fact this instability is not very 

serious because %   is so long.  The expression (39a) can be re- 

written in the form 

FT    dF^ "1 
T = v L ^v  D {40) 

g FQ FD dv 

from which we see that at 100 mph, T is typically 200 seconds. 

This is slow enough to permit stabilization by a simple feed- 

back system. 

More fundamentally, the above analysis is incomplete 

because it is based on the assumption that the propulsive 

force V    remains constant, independent of v.  This might be a 

fair approximation for propulsion by a jet engine, but it 

certainly is inappropriate for either of the two magnetic drive 

systems which are under consideration. 
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In the induction drive system, the propulsive force 

is of the form 

Av/v 
Fp = 2Fo l+(Äv/voM     ' (41) 

where Fo is the maximum propulsive force, which occurs when 

the slip velocity Lv  - v^-v relative to the traveling magnetic- 

field has the value v0 = c
2/2Trod (-15 mph for 1/4" aluminum). 

So long as Av < vo, (41) gives a driving force tending to 

stabilize the velocity.  Instability could result only from 

fluctuations large enough to decrease v to a value near (v -v ) 
4> o ' 

where the propulsive force reaches a maximum, allowing the de- 

stabilizing effect of F^ < 0 to reassert itself. By operating 

at a slip velocity well below vo, e.g. with F - F /2, such 

fluctuations can be excluded. Thus, with a suitable choice of 

v0 for the reaction rail, one could certainly produce a stable 

propulsion system using a linear induction motor. 

The stability analysis of the linear synchronous drive 

is more complicated since the propulsive force F depends on 

the instantaneous displacement between the driving field and 

the train magnets, rather than on their relative velocities. 

That is, our equation of motion becomes 

dv 
M dt = Fo sin k (V-X) - Vv)     • (42) 

In synchronous motion, v ■ dx/dt = v., and x = -x  + v t. 
V O     (J) * 

Thus, the equilibrium lag x  is determined by 
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I 
M        "xpandlng about this opuratinq point, 

L * itm "Fo COB k(%t"x> kAx - ^V Av 

•• 

F0  .in kxo -  FD(v^ 

■ - po - ri%J    kA« - ^t^) ^    • 

If we now assume that Ax and Av vary as oiwt, this rotjulres 

that 

-Mu2 ♦ iF^w ♦ kCF'-F^)1» - 0 

IT X  M1 o rD'    T77        » (43) 

where T - -M/F^v^) was defined in (39a).  Note that if Fo - FD, 

so that the propulsive force is constant at its maximum value, 

this reduces to the exponential solution (39), which describes 

an instability if F^v') < 0.  In normal operation, however, 

F
D "" F

0/
2'  and M becomes predominantly real.  It is convenient 

to define a natural frequency of longitudinal oscillation by 

m9*  - Fok/M = gpk - 2Trgp/ilx      , (44) 
a 
Q 

where g  i Fo/M describes the maximum acceleration capability 

of the propulsion.  For the typical values I ■ I feet and 

Ügp " 0.2g, (U)0/2TT) ■ 0.4 Hz.  Since w0 >> 1/T, we can approx- 

imate (43) by 

Q 

1 



i - JWoll - UD/r0)']H -   i/2T    . (45) 

Fi > -»i<%>Va    • (47) 

If one estimates fj - Fo {Itrac)</Itrain) " Fo/100, and 

Thua« if VICVAI •< 0 so that t > 0, thoro will »till be an 

InataliiUty, but in tho form of an exponentially growing 

uacillatuiy motion. 

Uaing tho parameter estimates above, the amplitude 

w.Mil.l incruaso a factor of o in ~7 minutes, during which some 

inoo oacillationa about the equilibrium displacement xo would 

occur.  Again, dynamic feedback could be used to damp out such 

a weak instability.  However, there is the following automatic 

stabilizing effect from tho induction force which arises if v 

departs from its synchronous value v..  (It is the analog of 

the use of "damper" windings in a rotary synchronous motor.) 

For small departures from v., (41) becomes 

Fp - -ZF^v-v^)^    , (46) 

where F. is the maximum induction drive force from the eddy 

currents "incidentally" induced by the track coils in normal 

metal surrounding the superconducting train magnets.  When (46) 

is added to the right member of (42), it replaces "^(v.) by 

f-FMv.) - 2FT/v ] in the equation of motion about the operating 1  D  $      I  0 

point. Thus, the exponential will become a decaying rather than 

growing one provided that 
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-F'(vx) ■ Ffy2v ■ F /4v, thit» leads to the requirement that 

v ^ v/12.  Since v = 4 mph for 1" aluminum plate, wo see 

that thin  inductive stabilization effect could be quite sub- 

stantial.  The only troublesome regime will be the low velocity 

one, in which some sort of wheeled support would be used in any 

case, so that an analysis of specific systems would be required. 

In summary, after taking account of air drag and the 

induction effect, the linear synchronous drive will be stable 

at most velocities, particularly with the hybrid levitation 

system, and any instability would be so weak that it could 

easily be cured by a simple feedback system. 

Acceleration to Speed 

In addition to the question of stability about a desired 

velocity, just discussed, there is the question of intentional 

acceleration and deceleration to change speed.  This is relatively 

simple in the case of the induction motor, since there is sub- 

stantial propulsion over a wide range of slip velocities.  Thus, 

amplitude control could supplement frequency control to a con- 

siderable degree in controlling acceleration. 

The problem is more severe with the linear synchronous 

motor, a reflection of the notoriously low starting torques 

of ordinary synchronous motors.  This means that a variable 

frequency source to vary the synchronous speed v, = vi^  will 

be essential, at least during planned accelerations, and 

probably throughout the track for reasons of safety and con- 
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venience in unexpected situations.  So long as exact synchronism 

is maintained, the full drive force given by (35) and (36) is 

available.  But, how large is the velocity range from which the 

drive can pull the train into synchronism? 

This can be estimated by using the equation of motion 

(42).  (The inductive term (46) is negligible.)  If v j^ v. , the 

synchronous drive term averages to zero, except for the change 

in v induced by the force during a single cycle of slip.  This 

change from the average v can be estimated by integrating (42) 

over the time interval At ■ Ä /4(v.-v), with the result 

F     SL 

M    2v 
, TT    FD] 1  /J10. 1 " I F-   Tv^TT       • (48) 

O' <f 

Equating this to (v.-v), we get the condition for synchron- 

ization: 

V's^slf (l-i»S       • '49' 

If we neglect drag, and set F = Mg*, we have 

j     x i * (VV) - ["HrJ "  2 mph   ' (49a) 

for typical parameters.  Unless this estimate is far from the 

mark, it will be necessary to maintain very fine control of 

v. (and hence of the frequency) to avoid going out of synchron- 
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i/aLion velocity.  This appears to be the major problem with 

the synchronous drive system. 
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Figure 1.  Velocity dependence of the magnetic drag in the 

hybrid system, compared with air drag.  For this plot we have 

assumed F^/Fr l^in = 2Trd//T)l ■ 1/80 and V = /I c2 Ah/uod2 

= 50 mph, which are appropriate for an aluminum plate of thick- 

ness d ■ 1/4", a 6 foot magnet period l^,  with the magnets 

strong enough to hold the sag of the train Ah to 1/4".  The air 

drag is assumed to rise as v2 and roach 10% of the weight of 

the train at 300 mph. 

I 
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(a) 

-1 
THRUST LOOP CONFIGURATION 

Fundamental 
Component 

(b) 

(c) 

L 

TRAIN MAGNET CONFIGURATION 

Figure 2.  (a) Configuration of thrust loop conductors for 

single-phase synchronous propulsion.  (b) Spatial variation 

of B , the average of B over width w, in the plane of the 

thrust loops due to the train loop currents.  Note the rather 

square waveform due to the high 3rd harmonic content, 

(c) Train magnet current configuration which produces the 

field shown in (b). 
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Wheel 

Superconducting 
Magnets 

Synchronous 
Drive Loops 

Figure 3.  Schematic diagram of a possible train configuration 

using tho hybrid systom for lovitation and propulsion.  The 

conducting sheet track might be 1/4" aluminum supported mechan- 

ically by a strong non-conducting material such as fiberglass- 

epoxy.  The vertical conductors on either side of it provide 

transverse stabilization forces (see text).  Possible con- 

figurations for the magnets and drive loops are shown in 
Figure 2. 
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Appendix 

T 

•'        Calculation of D  for a Sequence of Rectangular Magnet Loops 
2     

I We first consider a single rectangular magnet loop 

bounded by y = o, w and x = x,, x2, where x? = Xj + ^yj^i   and 

carrying a current I in a counter-clockwise sense.  We wish to 

compute B , where the average is taken between y = o and y = w 

along the line specified by x = o and z = h.  This is done by 

j        first computing ^(y1) 

db = 11 iai t-Iu    , (AD 

i 

.. 

Bz(y) = .. dBz = - 4 -•—p 

where R = -x Ä + (y'-y)^ + h2 is the vector distance from ds to 

(cy'/h).  Since ds is either along fc or $,   it is convenient 

to rearrange the triple product to (ä x ds) . R, SO that only R 

R dx or -R dy appears in the numerator.  Thus, the contribution 
y       x ^ 

of the loop at Xj is 

I        v'rtv I (vl-w)dx 

X, X -    ' 

w ■, o 
x,dy 

+ 
;; ■ i [x2^(y- [x2

z+(y'-y)z+hz] 2^2, V> 

Xjdy 

w Ix?
7+(y'-y)?+h?]3/? 

. (A2) 

The integrations are straightforward.  After a second inte- 

gration over y' to get the average, one finds 
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I    2x
2 (Vi=^ rr-h   (h^w^x,2)55 - (h2

+x,2) 
h2+x0

2 

2 

2x 

h^Xj 
^-     (h2+w2+xI

2)Js  -   (h2+x   2),5 

2 ' i 

+ In 
(h2+w2+x1

2)53+x1        (h2+x1
2)Js-x1 

(h2+w2+x1
2),s-x1        (h2+x1

2)J5+x1 

(h2+w2+x2
2),s-x2        {h2+x2

2)a5+x2 

(h2+w2+x:)
2),s+x2        (h2+x2

2)'s-x2 

(A3) 

J 

By using this expression, with x i, = x + £ /2, we 
n+1   n   x' ' 

can calculate the contribution to B of each loop of the train 
z 

magnet system, and sum them to get the total field.  Because 

of the complexity of (A3), however, it is not convenient to 

make extensive calculations of that sort.  Rather, we note 

that since the total B must bo periodic with period i   .   it ■ r      x' 

can be described by a Fourier series.  Moreover, the symmetry 

forbids even harmonics.  Thuu, the dominant terms will be the 

fundamental and third harmonic terms, which can be characterized 

by just two numbers.  These may lu< uatimatod by fitting the 

total Bz computed at two pointH It- the cycle.  For this purpose, 

it is particularly efficient to rhooao the center of the loop 

-x, = x2 = Ä
x/

4 (klx,l * T/Z), whore the fundamental and third 

harmonic appear in full amplitude but out of phase, and the 
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point where -5xl ■ x2 (kjxj = TT/6) where the third harmonic 

adds to the fundamental, which comes in with half amplitude. 

Mathematically stated, if we neglect all higher harmonics. 

Bz(Tr/2) =3,-03 

BzU/6) = üj/2 + B3 

Thus: 

ij -| BZ(TT/2) + Bz{v/6) 

1,-1 Bz(7r/6) - J5Bz{Tr/2)     . {A4) 

What remains is to calculate B (IT/6) and B (7r/2) , z z 
taking account of all the loops, not just the central one 

which includes x = 0.  Clearly the corrections from the 

distant loops are small, and one might hope to approximate 

the effect of each by the field of a dipole \i =  IwÄ /2c. 
* x 

Neglecting the small z-displacement h, the contribution of 

the n-th loop becomes 

_ t IwAv/2c 
(V B T     . (A5) n       [ (x1+x2)/2 + nü, /2] 

A 

The ± sign alternates along the line of ± loops, the n is a 

positive or negative integer.  For the TT/2 case, (Xj + x2)/2 

= 0, and it is Ux/6) for the TT/6 case.  The reliability of 

this procedure was tested by computing the exact contribution 
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of an adjacent loop for the Tr/2 case, assuming the representative 

values w = %^/2  and h = ^^12 and comparing with the dipole 

estimate.  The results were 1.04 I/cw and I/cw, respectively, 

confirming the satisfactory accuracy of the procedure. 

Using (A3) for the central loop, and the dipole approxi- 

mation, summed over enough loops for convergence, we compute 

that 

B (7r/2) = 11.6 I/cw z 
(A6) 

B, (Tr/6) = 13.8 I/cw    , z 

where we have retained the square loop geometry w = Ü, /2 and 

the height h = l^/\2.     In both cases, the non-central loops 

contribute about 17% of the total.  When these results are 

inserted in (A5), the results are 

B, = 16.9 I/cw = 33.8 I cÄ.     . 

(A7) 
B =  5.3 I/cw = 10.6 I/oÄ • x 

Since the corresponding results from a simple Fourier analysis 

of currents running to y = ±°o are Bj = 30 I/c«,  and B = 

10.4 I/cÄ  for the same values of h/  , but w ► "•, we may 

presume that the finite value of w has little effect on the 

validity of the simple Fourier analysis at least so long as 

w > )lx/2. 
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MAGNETIC SUSPENSION AND PROPULSION SYSTEMS 

FOR HIGH-SPEED TRANSPORTATION 

P. L. Richards 
M. Tinkham 

Abstract 

High speed transportation vehicles (trains) carrying 

superconducting magnets can be levitated by repulsion from 

diamagnetic currents induced in a conducting track.  Various 

approximate methodt are presented for calculating the lift 

and drag forces for such magnetic suspensions.  Fourier 

analysis of periodic train magnet fields is used to analyze 

"image force" and "hybrid null flux" systems which involve 

homogeneous conducting sheet tracks.  A lumped circuit analysis 

is used to discuss the "null flux" principle and related 

systems with structured tracks.  The stability and efficiency 

of linear induction and linear synchronous motor propulsion 

systems are studied using related methods. 
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MAGNETIC SUSPENSION AND PROPULSION SYSTEMS 

FOR HIGH-SPEEU TRANSPORTATION 

P. L. Richards 
M. Tinkham 

I.  INTRODUCTION 

Magnetic suspensions are being seriously considered 

for high speed ground transportation in several countries. 

The failure of adhesive drive systems such as steel wheels on 

steel rails at speeds in excess of 300 km/h has forced con- 

sideration of nonconventional approaches for both suspension 

and drive.  Vehicles levitated by magnetic repulsion were 

first1 considered in 1912 and discussed for transportation 

applications in the 1960's.2  These are generally not 

practical without the large ratio of strength to weight avail- 

able from modern magnets.  Although repulsive levitation from a 

ferromagnetic track may be feasible3''*, we confine our attention 

to systems in which levitation is obtained from the interaction 

of induced currents in a conducting (normal state) track with 

the field from superconducting magnets on the train.5 The 

optimal configuration of train magnets and track is being 

vigorously debated at the present time.5-70  In order to select 

the system for a given application there is need for simple 

semi-quantitative calculations which will porniit comparison of 

the relevant parameters for widely different geometries.  In 

this paper we discuss various approximate methods for calcu- 
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lating the efficiency of magnetic suspensions. 

In Section II, we Fourier analyze the periodic magnetic 

field and compute the lift and drag produced on a line of 

electromagnets above and below a flat conducting sheet as 

illustrated in Fig. 1.  This method of Fourier analysis yields 

particularly simple physical formulas relevant to designs in- 

volving homogeneous sheet tracks.  Detailed results are obtained 

for the case of a single line of train magnets above the track 

(the image force system).  An analysis is then presented of a 

(hybrid null flux) system which has train magnets both above 

and below a sheet track that is thin compared with the skin 

depth.  This system combines the homogeneous sheet track with 

some features of the "null flux" schemes of Powell and Danby,12'13 

in that both lift and drag forces become small when the track 

is located at the symmetry plane between the magnets.  Section 

III develops a complementary lumped circuit analysis which is 

useful for understanding the null flux track illustrated in 

Fig. 2(b) and (c).  When the train magnet is located in the 

symmetry plane no flux threads the track loop so that lift and 

drag forces approach zero.  Lift forces increase linearly and 

drag forces as the square of the (small) displacement Ah from 

the symmetry plane.  The analysis developed in the preceding 

sections is used in Section IV to discuss the stability and 

efficiency of passive track induction and active track syn- 

chronous linear motor drive systems.  A portion of this work 

has been made available previously. 2 1 
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II.  FOURIER ANALYSIS OF MAGNETIC SUSPENSION ABOVE A CONDUCTING 
GROUND PLANE 

A.  Formulation of the Method 

In proposed magnetic suspension systems there is 

typically a periodic array of "up" and "down" superconducting 

magnets along the direction of motion.  When the train moves 

over a conducting ground plane, the resulting time-varying 

fields induce eddy currents which interact with the magnetic 

field to produce both a lift and a drag force on the train. 

We present here a treatment which takes advantage of the 

periodicity of the fields to allow a straightforward solution 

of the electromagnetic equations over a wide range of conditions, 

The geometry tf the problem is sketched in Fig. 1/ where 

for generality we have included the possibility of magnet 

structure both below and above the plane.  This will allow us 

to model the "hybrid null-flux" as well as the "image force" 

schemes.  The x-variation will be given by a sum of terms 

OCQ^X^ with k = n (2TT/JI ) , where n is restricted to the odd 
XXX X 

integers if the current distribution is symmetric in x about 

the center of a magnet coil and antisymmetric about a point 

midway between an up and down coil.  Any variation in the y- 

direction is taken to have period I , but this variation plays 

a less crucial role because it doesn't cause time-variation 

with a train velocity along x. 

Since displacement current effects may be safely 

neglected, the magnetic field D satisfies Laplace's equation 
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V2B = 0 in the non-conducting regions I, 11,   IV, and V of 

Fig. 1.  Given a periodic variation in the xy piano as 

ei(kxx+kyy)^ this equation then requires real exponential 

variation with z, namely, 

$ - e±kz ei{k^X+kyy), <!) 

where k2 = k * + k.2.  Only exponential solutions which decay 
x    y 

as z -- i « are physically allowed in regions I and V.  In regions 

II and IV, both exponential solutions are required to satisfy 

boundary conditions at the surfaces of the ground plane, but 

the inward decaying exponentials will dominate the solution. 

The coefficients of +.hese terms are uniquely determined by the 

corresponding Fourier components of the current distributions 

in the magnet planes. 

Because the higher Fourier components (nx ■ 3,5...) 

decay more rapidly, we shall henceforth confine our treatment 

to the case of a single dominant Fourier component with 

k ■ 27T/Ä with the understanding that it may be necessary to 
xx 
superpose results for two or more values of kx to get a quanti- 

tative treatment in some cases. The relative size of the first 

Fourier component is illustrated in Fig. 3. The field vari- 

ation in the y-direction only contributes to the exponential 

attenuation by making k > kx without any qualitative changes in 

the results. We give no further attention to it here except to 

retain the notation k in the exponential factors as a reminder. 

The field in the metal satisfies the differential 
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equation  7ZB =  2iB/ö2  where  6   is  the  familiar skin depth defined 

by 

62   -     c2     =       c2_ ,0, 
2iTatü       27rok v   * (2' x 

Since the magnet period is much greater than the skin depth, 

allowing neglect of k2 compared to 1/62, the solutions are well 

approximated by the form 

2 a eMl+i)z/6 ikxx (3) 

. 

in the metal. 

The most general solution can be built up from these 

parts with coefficients selected to satisfy the boundary con- 

ditions.  Although such a solution is rather straightforward, 

it leads to complicated results needing numerical evaluation, 

with consequent loss of simplicity and insight.  We sidestep 

this frontal attack.  Instead, we first deduce convenient 

general expressions for lift and drag forces; then we treat the 

two limits in which simple solutions in closed form can be 

obtained, namely, the limits in which the thickness d of the 

ground plane is either much less than or much greater than the 

skin depth i.  Finally, we propose a way to piece these two 

solutions together to yield simple expressions which should 

also be reasonable approximations even in the cross-over region, 

where d ■ 6.  These results are used to explore the image force 

suspension which has a line of train magnets over a homogeneous 

conducting sheet track.  They are then oxtendad to trnat a 
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novel form of the null-flux suspension with train magnets both 

above and below the sheet track. 

B.  General Expressions for Lift and Drag Forces 

The Lorentz force per unit area is (l/c) /tf x B)dz, 

where the integration is over the thickness of the metal sheet. 

The forces on the magnet structure are equal and opposite. 

Using the Maxwell equations, simple expressions for the lift 

and drag forces may be deduced from this formula. 

The lift per unit area on the magnets is simply the 

difference in the magnetic pressures due to the rms fields % 
■+ 

and BÄ at the upper and lower surfaces of the sheet: 

Taking advantage of the fact that By = 0 in cur one-dimensional 

geometry and that either B is small («• k 6B <<B ) or else 

Buz ' Biz'   this can be written to good approximation as 

rL &\ Re —J7f  , (S) 

where Bx 5 (Bux + B£x)/2 and ABx = (Bux - B^) = 4. j)y/c, the 

net sheet current density in the metal. 

The magnitude of the drag force per unit area F can 

be inferred by equating the power dissipation in the plate 

cj-1 /jl]8 dz to FDv.  In the strictly one-dimensional case, 

the current flows only along 9, and it is given by J  = oE 

= a(v/c)Bz by Faraday's law of induction.  In that case 
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Fo-|?/li>.l'<u. tt| 

Mo«, U the width « of the .h..t i. „„a... the rcqu.r^nt 

of cloMd current loop, (dlv j . 0) introduce, ton« in J ■ 

•nd J,', which «., ro.p.ctlvely, correction, of order 

(«„/Jw)' .nd the «aller of (d/w)' or M/w)'. Th. fir.t 

corr.ctlor. 1. of order unity, b-t . .l«iur correction .ppc.r. 

in th. lift clcul.tlon, .o it ...ontl.ll> c.nc.1. m the 

Uft/dr., ratio. The J,' correction 1. „ncr.Uy neql^.bie. 

mm,  wo .hould ,et quit. r.ll.ble reeult., e.pecl.Uy for the 

U.t/dr., r.tio, by u.in, our on.-di«.n.ion., eppro.l.n.txon. (5, 

•nd M). .v.n in r..U.tlc flnlt.-wldth ,oo»etri... Accordin„y. 

- .h.n u.. th. on.-di«n.lon.l .pproxl,»tion. in the followin, 

without further di.cua.lon. 

To am  tl.... formul«, w« mu« rol.te the fields in the 

.heet to the .«„net .ourc. .tren,th..  The f.old. in the space 

between^ the .hcet end the MpM. aro of thc fürm , , ^^ 

♦Be  '.  For such field., 

■ Bx   far Bx ■ \-^z . (?) 

.inc. curl i  . o.  Thus, the bound.ry conditions st the upper 

snd lower .urfes can be espreu.ed In terms of para^ters b 

which depend on both the strength, of the fields in the planes' 

of the magnets ^ .nd the exponential attenuation over the 

distances hu>t separating the magnet, from the surfaces: 
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b    2B  e'^u ■ B   ♦ i B   , uu    ou       ux     uy 
(8) 

The rms source strengths Bn  are given directly in terms of the 

b. i 2B6e'khl  - Bn.. - i B, 

Fourier coefficients of the shejt current densities as 

where the somewhat curious coefficient takes account of the 

presence of both e"ikx components and of the conversion to rms 

values from the dc value 0 (x).  As an example, a close spaced 

series of 3 ft. square loops carrying persistent currents of 

300,000 A would give Bo ■ 6,000 G. 

C.  Thick Ground Plane or Hiqh-Velocitv Limit 

As our first application of the general method, we treat 

the case of a single set of magnets moving over a ground plane 

at sufficient speed that 6, the skin depth, is much less than d, 

the thickness of the sheet.  In this case, h^ = 0,  and we work 

only with the boundary condition at the upper surfaces; moreover, 

since the field in the sheet must decay downward, it must have 

fl       the form $ - 5ue
(1+i)z/6eikx.  Using div S = 0, iBz = k6Bx/(l+i). 

Thus, the boundary condition (8) yields Bux = bu[l+k6/(l+i)I"
1. 

To find the lift force, we simply insert this in (5), with the 

result 

F = /r» , (10) 
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where 

F  = 
uu 

,b 2 

8TT 

B2  e"2khu 
ou 

Si  ~ (ID 

is the limiting value of FL when v >.. So that k« * Ö.  m 

obtaining (10), we have dropped all terms of order (M,' and 

higher.  To get a more accurate result, one must include the 

|BZ|
2 term and also note that d2B/dz2 = (V2.9Vax2)B = (2i/62 

+k
2)B, so that a k-dependence enters the skin depth,  when 

this is carried through consistently, one finds that the first 

corrections to (10) are actually of order k^, so (10) ghould 

be quite a useful approximation. 

Now let us calculate the drag force using Eq. (6).  It 
is 

FD= (av/c2)|Buz|2 |e2(l+i,2/6dz= ^^ 
2))B  I2 

1 uz' 

Using our relation between B  and B   *-h,'0 K 
uz na ux' thls becomes 

(12) 

• 

.1 

PD-*MBUX|V8. = WPL = Poo^ 
(13) 

These results for the lift and drag forces are plotted vs 

velocity in Pig. 4.  The velocity soale ^ „^.^ ^ ^^ 

of a characteristic velocity v, = oVt.O at which k(  = 1. 

(For the typical design parameters listed in Table I, 

v2 ■ H  km/h.)  Thus, the approximation k6 < 1 is only valid 

for v/v2 i 1, but in practical situations this is always 

satisfied. 
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Note the particularly important result that the normal- 

ized drag (or inverse of the lift/drag ratio) has the simple 

form 

« 

F./F. = k6 = 2TT6/t  » c/U ov)1»  . (14» 
U        U XX 

Physically speaking, this is the small ratio imposed by the 

skin effect on the fields B and B , with which J  interacts z     x y 

to give the two forces.  Jsing numerical values from Table I, 

F /F = 1/30 for aluminum when v = 500 km/h.  Even with the less 

favorable speed of 100 km/h, F_/FT = 1/13, which is still 

workable and comparable to the wind resistance at higher speeds. 

At these two speeds, 6 ~ 1 cm and 2.3 cm, respectively, so that 

the results should apply quite well for the case of a 2.5 cm 

aluminum ground plane. 

D.  Thin Ground Plane or Low Velocity Limit 

We now consider the other simple limit, d << 6, which 

always holds at sufficiently low velocities, and which is quite 

adequate at all spetds of interest for aluminum of d < 0.6 cm. 

First we treat the single-sided case, in which bj= 0.  For 

this case, it is a satisfactory approximation to replace the 

actual sheet by one of infinitesimal thickness but the same 

finite conductance per square ad as the actual sheet.  The 

boundary values on the upper and lower surfaces are then 

related by B „ = B.  = B„ and 
*  UZ     X.Z     z 

3¥ (Bux- hn*  " ^y 3adEy = °*W*z    •     (15) 
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Combined with (8), thi« give« 

Bui " Bt« " "* Btx " <i♦2v/v•r, Bux ' V2a*v/V'    (lb) 

where 

v# - c
a/2fod - 2CRQ/1#, UTJ 

is a characteristic velocity. Here, Rp ♦ l/od is the resiBtance 

per square of the plane, while Z, - Am/c is the impedance of free 

space (which is 377 B In practical units). The physical «iqnifi- 

cance of this velocity is that when v - v,. tne anqular frequency 

w of MM currents induced in the sheet oquals their decay rate 

T"1 - R/L.  For a 2.5 cm thick aluminum sheet, v, • 6.7 km/h. 

When the relations (16) are used to compute the lift and 

drag forces using (5) and (6), the results are 

vVv,1 
p  a p  ,   - ■ _   , (18) rL   - l*vVv0

J 

and 
v/v 

p  . P , -JL—  , (19) 

where F  is as deixned in (11).  Thus the lift starts 

quadratically in velocity, reaching half its full value at 

v , and saturates at the same value F^ as for the thick ground 
o 

plane.  The drag, on the other hand, initially rises linearly, 

roaches a maximum of F./2 at v0 and then falls as v./v.  The 

normalized drag aqain lias a remarkably simple form: 
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FD/FL " Vv  « (20) 

m  that bolow v, tho drag force predominate, whereas above v# 

the lift force i. do«4nant.  Note that thi. re.ult (20) i. 

independent of the Fourier component, depending only on Rp of 

the ground plane.  Thu., for velocitie. .ufficiently low that 

* > d, thi. re.ult .hould have general validity for any field 

configuration. 

E'     ^«"»cdiate Vclocxti^,.  General DiBn..,n<^ 

Having worked out the behavior to be expected in the 

limiting ca.e. in which the .km depth 6 i« either much greater 

or much 1... than the thick««., d of the ground plane, we must 

now put them together to get an overall view.  From (2). the 

characteri.tic velocity v, at which d - 6 i« v - v /k d 
•    •  x * 

If we compare the two approximation schemes at v - v , 

where they should be approximately equally good, we find exactly 

the same lift/drag ratio for both, namely. 

1. b v - V, - v, ' Tu  • (21) 
FI/FD|  «A-a 

Thus, w. can .Imply piece together the two approximation., 

«.ing (14) above v, and (20) below v., and they will join 

together continuou.ly.  There will be a spurious discontinuous 

change of .lope at v. due to the change in approximation, but 

generally the re.ult .hould be rea.onably close to that of the 

exact solution. 
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Tho situation is less favorable with the lift force 

itself since some errors which cancel in the ratio F^ do 

not do so in F  itKoif   &«.... fL itself.  At v = v,, the low amj high velocity 

re.ults for t^W,  are lUI»,/*,)»)" end (lt (v./v,))-', 

respectively,  so long as v^v. » ,, the8e J ^ ^ 

unity so the difference is not very important.  Por the values 

in Table 1, v./v, . U. and r^. from the two lifting forties 

differs k| 4 percent at v - ,,.  For 8Inaller valueii of ^^^ 

the discrepancy is more significant. 

Although straightforward numerical calculations would 

give the exact results, eliminating any uncertainty, it is 

convenient for semi-guantitative work to have simple analytic 

expressions.  We suggest the following prescription:  For v < v 

we use the low velocity formulas (18) and (19).  Por v > v , we" 

use these same formulae with d replaced by the skin depth I. 

This has the effect of making the replacement v -. (v.v)'» in the 

formulas for v > v   Tho r-a^« o /«  ■ »,.  The ratio p^ ls not changeU from the 

value (14), but the lift force (10) becomes 

VF- " T+v^/^v '  'v =■ v,)  , (22) 

which has the advantage of Joining continuously to (18) at v 

but the disadvantage of a less exact asymptotic approach to " 

unit.  The latter disadvantage is not serious for train go 

tries where v./v. » 1 because ^ . 1 .n any ^  ^ ^ 

These results are presented graphically in Fig. 5 for 

ome- 
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several values of Vj/Vg.  Since we plot against v/v0, the low 

velocity regime (v < v^   is independent of magnet configuration, 

following the heavy curves.  Above the various values of v,, 

the various light curves are appropriate.  Note that they vary 

more slowly than the heavy curves because (VjV)^ replaces v in 

the formulae. 

One consequence of this is the change of shape of the 

FD curve from a sharply peaked one to one which rises quickly 

and falls slowly.  The latter behavior is characteristic of the 

experimental data reported by Coffey, et al.7'B Their data 

were obtained from a test geometry with v /v ^ 1, so the above 

prescription is not expected to apply very accurately.  Rather, 

the thick ground plane results, shown in Fig. 4, are probably 

more applicable over most of their velocity range.  These 

results give an extremely slow fall of F from its maximum 

(-  0.37 F^) , in reasonable agreement with the data. 

F.  Double Magnet of "Null-Flux" Geometry 

As our final application of this method, we treat a 

novel configuration in which the metal sheet lies between two 

rows of oppositely polarized tra-u magnet coils, so that both 

bu and b^ are non-zero in (8).  If the sheet is thick compared 

to 6, its two surfaces can be treated independently.  This leads 

immediately to the conclusion that the drag forces add, while 

the lift forces tend to cancel, causing a degraded performance 

of little interest. 

The interesting case is when d < 6, so that the con- 
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trlbutions of the top and bottom magnets to B  [which gives the z 

drag, according to (6)] tend to cancel, as does AB  [which gives 

the lift, according to (5)].  Since the drag vanishes as B * z 
whereas the lift vanishes only linearly with AB , it is quali- 

tatively obvious that the drag/lift can be made arbitrarily 

small by making the cancellation arbitrarily complete.  This 

is essentially the same physical idea that underlies the null- 

flux scheme of Powell and Danby 12'13 We now develop this model 

in quantitative detail to show that it is feasible to obtain 

the low drag of the null-flux scheme without the need for the 

structured track of coils characteristic of the Powell-Danby 

configuration. 

If we retain the approximation of replacing the sheet 

by one of infinitesimal thickness but the same Rrn , we have the 

boundary condition that B is continuous, so B  = B0 , and B 
Z U Z     JC Z X 

suffers a discontinuity 4TT0 /c = 2vB/v0 as above.  Combined with 

the conditions in (8), imposed by the sources, this leads to 

the results 

Bx ä <Bux + «tx'/2 - (bu + V/2  ' 

fl 

4Bx '=  Bux - Blx " 2vVv. " (bu - bll)/(1 + iv./v)-    (23>        I 

Inserting these in our force equations (5) and (6), and taking 

b and b0 real, yields 

bu'-bt' vVv.' 

L "  5n   l+vVv0
2 
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: and 

U =    R    l+v'/v 7  * <25) 

Since B^ ► bu as the sheet approaches a symmetric 

position, those results indicate that FD/FL can be made arbi- 

trarily small.  m fact the finite thickness of the iheet always 

causes a finite drag, and we must evaluate this to get a realistic 

result.  This drag arises because dB /dz ^ 0 even if B » 0 in 
z z 

the symmetric position.  Using div 5 = 0, B' (0) ■ dB /dz I 

"lkBx|o = ~ikK  = ik(bu
+bJl)/2.  If we approximate Bz(z) in the 

sheet by Bz{0) ♦ B« (0)z when evaluating (6), the term in B' 
z 

gives an additional contribution to the drag, proportional to 

k2d2.  Thus (25) is replaced by 

(26) 
v  r(bu"b£)2   kM^       Ü FD ■ f#7 [VPh*?  + ST (Vb£^   • 

All further correction terms are down by factors of order 

d2/1062, and will be ignored hereafter. 

It is now useful to re-express the parameters b and b 

in terms of the magnet strengths and distances as given in (8). 

For simplicity consider a symmetric magnet structure, so that 

Bou " Bol  B V  Further, define the "sag" of the train below 

the symmetry plane by Ah = ho-hu = h^, where 2ho is the 

separation of the upper and lower magnet planes.  Then 

evaluating (24) and (26) carrying only leading terms in Ah, 

we obtain 
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F    . 1 B  »  .-2kh0    v'/v,' 
L       t  Oo    * UvVv t kAh     ' (27) 

and 

FD  " I  «o'   *'2khi *- ftjiilLL # tül v, (UvVv#i * -rrl 

Ac expected qualitative!»/  r - AI.   U 4   xcaciveiy, PL . Ah, „h,,..., p^ . (Ah) , ^ 

i ' 0.  Al.o note that for fixed magnet .trength Bo# P im 

maxiroum for t  ■ inh  U».<^L. or *x  4who, which «ugge.t. that thi. relation be 

used as a design auid*   T*> <. .*.  i 
ign guide,  it is consistent with the numerical 

values chosen in Table I. 

To carry thc „.iy.i, (urther lt lg conv.ni#nt te 

co„.lder the „oraaUzed drag F^.  After droppin, . term 

•VU (Ah)' compered to unity, thi. ha. the .i^,. form 

/i~ /i*i' *   ' i30) 

at a characteristic velocity 

FD/F - kAh ~ ♦  ^1 » D L       v   TTIK ve (29) 

This normalized drag has a minimum value 

(VFL)min • « - Ä A X 

v, » 2 /J v0 Ah/d « /I o> Ah/.ad' . 80 km/h  .     (M, 

Thus (29) has the normalized form 

Fn/F, D^ L      1  v    V 

3 
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So long as FL equals the weight of the train, it cancels out, 

|       and the ratio r^i^)^  will also be given by (32). 

Since the drag force has a broad minimum near v - v,, 

I       and since (PD)mln U so small compared to the high speed air 

drag (- 0.1 FL at 500 km/h), it is not critical to minimize the 

|       magnetic drag at cruising speed.  Rather, the parameters should 

be chosen to set v, well below the maximum speed of the train. 

so as to reduce the dominant magnetic drag at lower speeds. 

Fig. 6 illustrates this point with the parameter values in 

Table I. 

Evidently, the potential performance of this system is 

very attractive compared to the single-sided, image-force 

systems, at least from the standpoint of low magnetic drag. 

Its primary disadvantage is the requirement of a  double set of 

magnets, with the related str r:tural complications.  Also, aft 

in the null flux system, the magnets must be considerably 

stronger than required in the singU-sided system, because of 

^       the substantial cancellation of lift forces described above. 

This poses no serious difficulty, 300.ü00 A loops are adequate 

for typical train weights, and these are well within present 

capabilities.  In fact, as Powell and Danby«« have pointed out. 

the stronger magnets offsr the advantage of making possible an 

efficient linear synchronous propulsion aystem.  A schematic 

diagram of such a combined levitation-propulsion system is 

shown in Fig. 7. 
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III.  LUMPED PARAMETER ANALYSIS OP LEVITATION EPPICIEMCY 

A.  General Formulation 

We can gain very general in.ight into the co^parativ» ! 

propertie. of variou. .y.tem., .uch a. the Powell-Danby -null- 

flux" .uapenaion (which use. coil.) and the airier ground 

plane "inwige force", by a lumped parameter equivalent circuit 

analy.ia.  imagine that we are levitating one coil above 

another by paa.ing alternating current I, through one coil 

which aete up a magnetic field which repel, the current 1, it 

induce, in the other coil.  The for« can be expre..«! in't.nM 

of the mutual inductance a. f . -1,1,71*.  Sin.^ I, i. indued 

by the coupling to I , it i. obtained by aolving the dif fere.^.i.l 

equation 

dIa ai, 
**Wr*   »A ■«iT • (33) 

TTITTd'  ' (34)       I 
where | - L,/R, i. the ordinary time con.t.nt of the .econdary 

circuit.  Thua, the re.ulting lift force i. 

Taking an e w time dependence, and aolving, we find 

(M/L )! 

-^^^(dM/dh) 
PL " I, <U1/W»T»J "  ' (35) 

Here UJ' ha. the .ignlficance of the rm. value, and h mea.ure. 

the vertical separation of the coil..  Drive force, could be 
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obtaincü iron the hutwuntal component» of .M in a norc complete 

Model. 

As in Section 2 we compute the Jrag force F_ by equating 

PDv to the dissipated power 

<M/L,)' jlj« R^ 
P " ^ R» "  1*1/UM  ' 

so that 

rL    1 idNi 
|J- VtM Iff  ' (37) 

»•hus, FL/rD is proportional to velocity, insofar as M and \   are 

independent of frequency, that is« ignoring skin depth effects. 

Equation (37) is our fundamental result, which can be applied to 

any geometry of suspension with suitable evaluation of the 

parameters. 

B.  Suspension Over Ground Plane 

In the levitation of a coil a distance h above a per- 

fectly conducting ground plane, the field configuration and 

energies can bo found by assuming an equal and opposite current 

in an image coil an equal distance below the surface.  The 

mutual inductance M for two parallel conductors of length I  and 

separated by 2h << t  varies as I  In U/h) so that (1/M) |dM/dh| 

1/h. Generally, we expect the numerical coefficient to be of 

order unity.  For a pair of square loops 90 cm on a side 

separated by 30 cm it is 1.1/h.  "^us, the lift/drag ratio 

should be approximately 

.. 

.. 
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FL M    VT 
F IT    * D Image 

(38) 

We estimate t by taking the inductance of a square loop of 

edge i  and diameter << I 

L = |y (In | + .17) -  22* (39) 

A rough estimate of the resistance of the current-carrying 

material is that of a loop of perimeter AS.,   width 2h,   and 

thickness d, namely R  2il/c;hd, so that 

L  IQahd ..n* T - | - -E^-    . (40) 

Thus, from (38) 

F L „ IQovd „ , c v 

The good agreement of this result with (20) gives us some 

confidence in the present approach although it is not well 

suited for treating the case of a conducting ground plane, 

since it is far from a lumped constant situation. 

Even further from the lumped parameter situation is 

the case of a periodic magnetic field over a homogeneous 

conducting sheet treated in Section II.  In this case, the 

exponential variation of the field leads to (l/M)|dM/dh| 
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» k = 2TT/äX, SO the lift/drag ratio (40) becomes 

Fl/FD = 27rvT/£x = U)T 

where u is the angular freu; ency of the ac field seen by the 

track.  This agrees with our result FT/Fn  = v/v  (20) if 
L  D      o 

T ■ odÄ^/c2, which is reasonable considering that the sinusoidal 

currents flow in strips whose width 1« ■> it /2v.     We may there- 

fore consider the condition v ^ vo as equivalent to an = 1. 

For lower velocities the track currents decay before the train 

moves on.  For higher velocities current is left behind in the 

track. 

C.  Null-Flux Suspension 

The real utility of the method comes in dealing with a 

system using coils such as the Powell-Danoy null-flux sus- 

pension. * 2 ' l 3 we represent this by three parellcl square coils 

of edge l,   sketched in Fig. 2(b) and (c).  The outer two coils 

are connected in series opposition to form the secondary. Then, 

if the primary is centered, the mutual inductance to the two 

halves of the primary cancel.  If it is displaced by a distance 

Ah, the net mutual inductance is given by 

-l"^^. Uh«<h0«M. 

l/M |dM/dh| ■ l/ih (43) 

M  c 
o 

Thus, 

and 

Pl/FD "  VT/Ah- 

We can compare this result with 'the formally similar 
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(38) for the image force problem.  Although differences do arise 

from the various values of T in the different suspensions, the 

large benefits of the null-flux scheme arise from the fact that 

by increasing the train magnet current, Ah can be made arbi- 

trarily small.  There is no mechanical obstruction since Ah is 

measured from a reference plane in space.  In the null-f]ux 

system, therefore, the suspension stiffness can be adjusted 

almost independently of the mechanical clearances and the 

stiffer suspensions have larger values of F./F-.  As is the 

case in the hybrid system discussed in Section II.F, this high 

efficiency arises from the fact that FL is proportional to the 

product of train and track currents divided by their separation. 

The drag F-, however, arises from dissipation in the track only. 

It decreases as the inverse square of the train magnet current 

when F. is kept constant. 

Because of the large critical currents available from 

modern superconductors it appears possible to achieve the 

increased efficiency of the null flux suspension in practical 

systems.  The stiffer suspension would require finer track 

tolerance or a secondary suspension to protect passengers from 

unacceptable transverse accelerations.  The suspension would 

also have to smooth out any vibration due to the loop structure 

in the track.  (This problem would be eliminated in the con- 

figuration analyzed in Section II.F.)  In order to maintain 1 

as large as for the homogeneous ground plane at low velocities, 

it would be necessary to use a compar.iM«- amount of metal 

-96- 

1 



are much too large to permit the required ~ 10 - 100 Hz 

excitation of the train magnets. Therefore the linear in- 

duction drive motor must have normal state (copper) stator 

windings and be separated from the levitation system.  The 

train then contains two linear induction motors pulling against 

each other.  The design freedom obtained by separating the 

motors allows some improvements such as increasing the re- 

sistance of the reaction rail near stations to provide large 

starting and braking forces at large slip Av.  In the language 

of Section II, we increase v to increase F- at large v.  This 

reduces the need for widely adjustable drive frequencies.  For 

optimum drive force the motor should be operated at a slip 

velocity Av ■ v0 by varying the excitation frequency. 

The drive motor must be strong enough to accelerate 

the train past the drag peak at v = v0.  It also requires a 

similar force to accelerate the train with 0.2g in the inter- 

mediate speed range.  The force required to overcome air re- 

sistance at top speed will also be comparable.  The drive motor, 

therefore, must be at least as strong as the levitation "motor" 

without its advantage of superconducting magnets.  The use of 

the more efficient double-sided geometry22 with iron flux 

returns would partially compensate for the lower stator current 

densities. The magnetic reluctance of a large clearance gap, 

however, would still produce a poor power factor.  Even with 

variable frequency drive it will be difficult for an induction 

motor to provide adequate drive force with the large train- 
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track clearances which are a desirable characteristic of super- 

conducting magnetic suspensions.  A more complicated system 

involving a separately suspended induction motor operating very 

close to a reaction rail appears to be the only solution.  i:vcn 

if the double suspension can be made to operate satisfactorily, 

onboard induction drive requires large amounts of power to bo 

transmitted to the rapidly moving train.  This appears to be a 

difficult technical problem. 

B.  Active Track 

Tnc obvious way to escape the troubles of the linear 

induction motor drive is to pull the train along by a traveling 

flux wave from an active track.  Since this removes the heavy 

induction motor from the train, the train weight is substantial}*/ 

reduced and no drive power needs to be transferred to it.  One 

could conceive of retaining the induction principle, but for 

any reasonable clearance, the efficiency of the system would bo 

very low considering the need to activate miles of track. Thus 

wc are led to give favorable consideration to a linear synchronous 

drive.  Such a drive takes advantage of th# existence of strong 

superconducting permanent magnets in the  ain to obtain adequate 

propulsive force with much lower track currents than would other- 

wise be possible.  The principal disadvantage of the synchronous 

drive is the requirement of wide-range variable frequency power 

to give adequate propulsion at all speeds. 

In principle the linear synchronous motor can be used 

with the homogeneous ground plane levitation system of Section II 
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for th« track.  At hi9h velocity, on the other hand, an increase 

in T or a reduction in the amount of metal used (compared with 

the homogeneous ground plane) can be obtained if the coils are 

wound from many turns of wire to avoid skin effect loses. 

IV.  MAGNETIC PROPULSION 

A»  Passive Truck 

Any high speed vehicle needs substantial amounts of 

drive power.  Linear electric motors are J favorable drive 

mechanism because they produce less environmental pollution 

than alternatives such as jet engines.  Induction motors with 

the •lecrtro-magnots (stator) on the train and a conducting 

reaction rail (rotor) have been suggested for driving con- 

ventional wheeled trains as well as air-cushion and magneti- 

cally levitated vehicles.  The theory developed in Section II 

for the drag force PD of a passive magnetic suspension pulled 

over a plane homogeneous track is directly applicable to the 

design of a linear induction motor.  The suspension can be 

cons dered as an induction motor with zero synchronous velocity. 

The curve of Fp versus velocity v in Fig. 5 can thus be 

interpreted as the drive force (torque) versus slip rate. 

The simplest levitation and drive system is one in 

which the train magnets of Section II (Fig. 2(a)) are excited 

with suitably phased ac, so that a periodic magnetic field 

moves back along the tnin with a phase velocity v..  We then 

replace v by Av - (v-v0) in our formulas and obtain a negative 
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F which is now the force driving the train.  There would be 
D 
adequate slip Av to provide levitation during acceleration, 

but in the absence of any external drag force such as air 

friction the train would•approach synchronous speed v = v^ and 

drop onto the track.  Even allowing for air drag, care would 

be required to design a system which would be stable at all 

drive speeds because the drive decreases with increasing slip 

in the range where levitation is strong.  It appears that the 

stability problem could be solved by introducing standing wave 

as well as traveling wave excitation of the train magnets. 

Such a system could hover at rest, accelerate, and brake. 

In the low velocity range v < v,, the power required 

to levitate a train if PD = FDv = FLv0 = Mgv0 from (20).  It 

is independent of velocity because the same amount of track 

current is required to lift the train at any speed.  The 

dissipated power is proportional to track resistance which 

increases only at high velocities where the skin depth limits 

the effective track thickness and (20) is no longer valid.  We 

may compare the power required to overcome drag with the power 

required to accelerate the train at O.lg.  This reversible 

power P - 0.1 Mgv is greater than PD for v > 10 v0.  Using 

the numerical values from Table I, 10 vo =65 km/h, so most 

of the power handling capacity of the motor would be required 

for acceleration, not levitation. 

The idealized system described above is unfortunately 

not practical at present because ac losses in superconductors 
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** if portions of the train loops are exposed so that the track 

drive loops can couple to them without excessive shielding 

from the ground plane.  In practice, however, stronger train 

magnets are required for efficient drive than for image force 

levitation.  Such stiong train magnets are a feature of the 

various null-flux suspensions described above.  Powell and 

Oanby1' have studied specific examples of these systems. 

Here we re-examine some of the design considerations for linear 

synchronous propulsion, including questions of stability, from 

a more general point of view. 

For simplicity, we restrict our attention to a single- 

phase drive, with a track thrust winding of the form shown in 

Fig. 8(a).  The phase velocity of the wave is v - vt , where 

v is the frequency of the rms current I| and i  is the spatial 

period.  Such a configuration actually produces a standing 

wave which could drive a train in either direction. Additional 

windings, or more likely a full three-phase system, would be 

used to define a sense to v .  For a given direction of motion, 

however, the effects of the several windings are simply additive, 

and our simple analysis is readily adapted to give the appro- 

priate numerical results. 

■| For an initial orientation, it is useful to compare 

typical track impedance values with the load imposed by the 

train.  For definitenoss, consider a configuration with I - 2w, 

so that the loops are square.  Then the total round-trip con- 

ductor length is 4 times the length of the track.  If the 
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If !••■ propulsive fore« Is required, s phase shift * ^ 0 

develops, and the train Impedance acquires a reactive component. 

The significance of (45) Is thai the impedance varies 

conductor were 0000 gauge aluminum (1.2 cm diameter), the 

resistance per km would be about 1.1 0; 2.5 « 2.5 cm square 

aluminum bus would give ■ 0.15 il/km.     In either case, the 

inductance per km would be about 3.6 mil, corresponding to an 

inductive reactance of ■ 1.5 »/km at 60 Hz. 

For comparison, we must know the load imposed by the 

train.  The instantaneous back emf follows the variation of § 

Fhown in Fig. 3, but only the fundamental Fourier component 

gives any time average effect If the track current is purely 

sinusoidal.  This is nearly the case because of the highly 

inductive nature of the track impedance.  The back emf induced 

by the train will be 

t - (4wL/tx)bv/c, (44) 

where L Is the total length of the magnet structure.  By 

comervation of energy, F v - cl, cos#, where F is the pro- 

pulsive force, li  is the track current, and 4 is the phase 

angle between I, and e.  Evidently F has its maximum value 

Pp,max wh#n c01* " 1» ln which case the impedance is purely 

resistive, and Its value Is 

c/I  - c'/F     v - 16 B'VW'L'/F    c't »  .    (45) 
i      p,max ' p,max  x  *    ,"' 

.1 

I 
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as B^ xn comparing systems of the same physical size.  Thus, 

jj       the null-flux systems which typically have at least three times 

stronger magnets than image force suspensions will have im- 

U       pedances an order of magnitude larger.  To relate the actual 

value, of resistance to system parameters, it is convenient to 

assume that the clearance between magnet and drive winding is 

the same a. that between the magnet and the track.  One can 

then eliminate 1< in term, of the weight, and deduce the result 

.. 

JL . 6 wL q v 
20   f\Vc   ' (46) 

Where Fp,max " "■•• Zo " <"/c - 377 fl is the impedance of free 

•pace, and f ^ 1 for image force sy.tem. and f > 2Ah/h - 0.1 

for null-flux system..  Thus, at v - 400 Jcm/h, we have^ ■ 0.1 ft 

for imag-force and R . 1 u for null-fiux su.pen.ion..  Since 

th. drive power I. . 5 MH in our example, it i. of con.iderable 

importanc. to maintain high efficiency. Thi. require, that the 

track impedance of 0.1 - l w/km be le.. than R.  Thus, whatever 

.y.t.« of .u.pen.ion i. u.ed, a linear .ynchronou. drive i. made 

mo.t practical by u.ing the .tronge.t po..ible train magnet.. 

Th. .troig ««gnet. ch.racfri.tic of null-flux .y.tem. give high 

•nough impedance to allow r.a.onabl. efficiency with track ..g- 

«•nt. of 1 - 2 km on either .ide of a fe.d point to be activated 

•t one. A track current I, . 2,000 A would be required for a 

typical null-flux magnet .trength of I, - 300,000 A.  The weaker 

magnet, char.cteri.tic of imag. force .y.tem. would require » 3 
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times the track current and thus ■ 10 times the number of 

transformers and switches to have the same efficiency.  Image 

force systems can of course be driven from an active track if 

extra train magnet strength is added which is not used for 

levitation. 

An alternative system which is closely related to the 

linear synchronous motor is the linear dc motor.  If current 

reversing switches controlled by the position of the train are 

placed on each drive loop of the track, a direct current can be 

used to propel the train.  When compared with the above dis- 

cussion of the linear synchronous motor, the importance of track 

inductance is decreased, but strong train magnets are still 

desirable for high efficiency.  The practicality of the linear 

dc motor depends on the cost of the very large number of switches 

required. 

C.  Longitudinal Stability 

It is well-known that there is a potential instability 

associated with a drag force which decreases with increasing 

velocity.  In general, we have 

dv 
M dt = Fp " FD(V)    ' (47) 

where Fp and FD are the propulstion and drag forces, respectively. 

If one attempts to maintain a constant velocity v by setting 

Fp " FD(vc^' we have' for small fluctuations in velocity 6v, 

and assuming F remains constant, 

M d^övl., _ PD. (Vc)6v (48) 
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so that 

where the time constant T It given by 

\   - -M/P'p^)   . (50) 

Thus flucutations in velocity will grow exponentially if \       0, 

that is, if FVv.) < 0, as is always the case for the magnetic 

drag in conventional image-force or null-flux schemes.  In the 

hybrid scheme, however, the magnetic drag increases for v > v,. 

When the air drag is added in, all these systems become stable 

at sufficiently hiyh velocities.  In fact this instability is 

not very serious because i   200 sec is long enough to permit 

stabilization by a simpl« feedback system. 

More fundamentally, the auovo analysis is imcomplete 

because it is based on the assumption that the propulsive force 

F  remains constant, independent of v.  This might be a fair 
P . 
approximation for propulstion by a jet engine, but it certainly 

is inappropriate for either of the two magnetic drive systems 

which are under consideration. 

In the induction drive system, the propulsive force 

has the form of FD in (19) and Fig. 5: 

Fp " 2FI MWv8P   ' ( * 

where F is the maximum propulsive force of the induction drive, 

which occurs when the slip velocity Av - v^ - v relative to the 

traveling magnetic field has the value v0 - cV2T.od {•  24 km/h 

for 0.64 cm aluminum).  So long as Av < v0, (51) gives a driving 
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fore. t.„di„, to .t.biU.. th. «locity.      mm „„« 

MMM only fro. fluctuation, l.r,. .nou,h to pu.h «, „„.„. 

tin, point ov.r ch. p«rt ln th. iliv<, mrn_    ^ ^„tin, „ 

a .UP vulocity Ml below v., on. could crt..nly produce a 

.fbl. propul.ion .y.t«. u.in, . iln.,r ln<luctlon mmi 

Th. .fbillty an.ly,i, of th. li„..r .ynchroIlou, „„„ 

i. «or. co^licatad .inc. th. propul.iv. fore rp d.pond. .n 

th. in.t.nt.n.ou. di.pl,c.».nt b.tw..n th. drtvin, fi.ld and 

th. tr.in ».,n.t.,   rath« than on thai, r.l.ti». v.lociti... 

Thun,  our equation of notion bacoav.. 

M ^ - P,  «in k(v#t -  x)   - i ^j     , (52) 

wh«r« F, . Pp>raÄX.     m «ynchronou, motion,  v - dx/dt .   v  , 

M x - .xo%t.     Thu. th. ^uilibrl«. 1.9 x, 1. mmmL by 

P, .inkx,  - r0(v^a     E«P«ndlng «bout  thl. op.r4tl«g point, ' 

M Sf ■  -IP.«  - rD«(%)jl kAx . p.0(v#)Av. (53, 

If W. now ...u». that Ax and Av vry .. g^ Änd d,fin# # 

natural  fraquancy of  longitudinal o.cillatlon ./  . Fik/M ^ 

obtain 

.inc. 1/, . rVV/H .a v    «„,. «,., lf .   . ^ ^ I 
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the propulsive force is constant at its maximum value, the 

exact form reduces to the exponential solution (49), which 

describes an instability if F'D(vc) < 0.  In normal operation, 

however, F ■ Fo/2, and w becomes predominantly real.  Thus, 

if F' (v ) < 0 so that T> 0, there will still be an instability 
D  ^ 

but in the form of an exponentially growing oscillatory motion. 

For a maximum acceleration capability Fo/M ■ 0.2g, we find 

w /2n ■ 0.4 Hz. 

The amplitude would increase a factor of e in = 7 

minutes, during which some 1000 oscillations about the equi- 

librium displacement x0 would occur.  Again, dynamic feedback 

could be used to damp out such a weak instability.  However, 

there exists an automatic stabilizing effect from the induction 

force which arises if v departs from its synchronous value v^. 

(It is the analog of the use of "daroper" windings in a rotary 

synchronous motor.)  For small departures from v^, (51) becomes 

W    - -2FT(v - vj/v   , tlil p     I     4»   o 

where F. is now the maximum induction drive force from the 

eddy currents induced by the track coils in normal metal 

surrounding the superconducting train magnets.  When (55) is 

added to the right member of (52), it replaces -F,D(v^) by 

(-F* (v ) - IF./v^]   in the equation of motion about the 

operating point.  Thus, the exponential will become a decaying 

rather than growing one provided that Fj > iF'p(v^)|v0/2.  If 

one estimates Fj - F0 (Itrack/ train) - F0/100, and -F'^) 
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■ PD/2v ■ F0/4v, this leads to the requirement that v0 < v/12. 

Since v0 • 6.5 km/h for a 2,5 cm aluminum plate, we see that 

this inductive stabilization effect could be quite substantial. 

The only troublesome ragime will be the low velocity one, in 

which some sort of wheeled support would be used in any case, 

so that an analysis of specific systems would be required. 

In summary, after taking account of air drag and the 

induction effect, the linear synchronous drive will be stable 

at most velocities, particularly with the hybrid levitation 

system, and any instability would be so weak that it could 

easily be cured by a simple feedback system. 

D.  Acceleration to Speed 

In addition to the question of stability about a 

desired velocity, just discussed, there is the question of 

intentional acceleration and deceleration to change speed. 

This is relatively simple in the case of the induction motor, 

since there is substantial propulsion over a wide range of 

slip velocities.  Thus, amplitude control could supplement 

frequency control to a considerable degree in controlling 

acceleration. 
,1 

The problem is more severe with the linear synchronous 

motor, a reflection of the notoriously low starting torques of 

ordinary synchronous motors.  This means that a wide range 

variable frequency source will be essential.  So long as exact 

synchronism is maintained, the full drive forcj  is available. 

The velocity range over which the drive can pull the train into 

0 
.! 

1 
.1 
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U       synchronism can be estimated by using the equation of motion 

jj       (52),  (The inductive term (55) is, unfortunately, negligible 

"       in this context.)  if „ p| Vy   the 8ynchronoua drive ^ 

Q       averages to zero, except for the change in v induced by the 

force during a single cycle of slip.  This change from the 

average v can be estimated by integrating (52) over the time 

interval At - V4 (v^ - v).  Equating the result to (% - v) , 

we get the following condition for synchronization: 

.. 

Ü 

. 

i 

.. 

F  £ p 
(v4 - v)2 < -Z Ji n  I D. 1 I   ' - IT 77 (1 " 7 jH • (56) o 

For typical parameters wo obtain the condition (v - v ) < 3 

km/h.  It will clearly be necessary to maintain very fine feed- 

back control of the drive frequency to avoid going out of 

synrhronism. 

VI.  CONCLUSIONS 

LI We can draw several conclusions about magnetic trains 

from the model calculations presented here.  Of these, the 

first is that if a magnetic drive system (linear motor) is used 

[J       for propulsion, the suspension and drive systems should be 

considered together in seeking an overall optimum system. 

The image force suspension system appears to have many 

satisfactory features.  The cost of both train and track is 

relatively low.  Although it is less efficient than other systems, 

j       the magnetic drag can probably be made adequately low from the 
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viewpoint, of power cost.  This system is relatively difficult 

to drive, however, since losses in available superconducting 

materials prevent ac excitation of the train magnets.  A con- 

ventional linear induction motor is required, which operates 

with close tolerance on a reaction rail.  Such a motor would 

require an independent tight suspension system and also the 

transmittal of large amounts of power to the rapidly moving 

train. 

Because they have stronger train magnets, it is practical 

to drive null-flux suspensions from an active track, eliminating 

the need to transmit power to the train.  Image force suspension 
j 

systems can also be driven from an active track if strong train 

magnets are used which are not efficiently coupled to the part 

of the track which causes levitation.  Possible systems include 

synchronous drive from track loops excited with variable fre- 

quency alternating current (linear synchronous motor) or a dc 

system in which the direction of the current in the track loops 

is switched on command from the train (linear dc motor). 

The Powoll-Danby null-flux scheme uses a looped track 

to obtain cancellation of drag forces.  The expense and possible 

vibration from a looped track can be avoided (while the low drag 

is retained) by a hybrid system which uses train magnets on 

either side of a thin homogeneous track.  If the train magnet 

design is efficient, this hybrid null-flux system may prove to 

be an optimum one for many applications, especially those with 

long runs of track and relatively few trains. 
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The longitudinal stability of a train in the speed range 

in which total drag is decreasing with velocity depends on the 
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Li 

11 
0 
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drive system used.  First-order analysis shows that the insta- 

bilities encountered in practical systems are weak and can be 

eliminated fairly easily with feedback control. 
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Figur« 1. Schematic diagram showing pariodic magnat currants 
at haights hu and h^ above and below a conducting 
ground plane of thickness d. Magnet array is fixed 
in the train, and moving with velocity v along the 
x-direction. 
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1 
TRAIN MAGNET 

LOOP 
MAOIST        i,    i»      S 

(o) IMAGE  FORCE TRACK 

(WNULL   FLUX  TRACK 

.1 

(c) COMPLETE NULL FLUX TRACK LOOP 

Figur« 2.  Schematic diagram contraiting the significance of the 
characteristic height« in the image force suapemion 
(a) and the null-flux suspension (b).  If the train 
magnet strength is increased, h increases in (a) 
raising the train higher.  By contrast» Ah decreases 
in (b giving a stiff efficient suspension.  (c) shows 
a full null-flux track loop of a typo which could be 
cheaply punched and folded from sheet.  A more expensive 
design which would cause less drag at high velocities 
because of reduced skin effect losses consists of two 
multi-turn coils connected in series opposition.  Doth 
the magnet and track loops should be visualised as 
being extended periodically in the direction of train 
motion v. 
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Figure 3. The s component of the ever%ge field due to a typical 
rectangular train magnet compared with Its fundamental 
Fourier component. This field has been averaged over 
the width of the magnet In the y-diraction. 
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AIR ORAO^v'' / 

c-'" r QNETIC DRAG 
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Figure 6. Velocity dependence of magnetic drag in the hybrid 
system of Section II.Pf compared with the air drag. 
The parameters assumed are Pn/PLUin - IVBi and v! 
(the velocity for minimum magieW^rag - 8? km/h 
SS ^i^hV;" yti^"^ for a 0.64 cm aluminu; 
sheet, with Ah - 0.64 cm, and ».x - 1.8 m.  The air 
drag is- assumed to reach 0.1 of tho weight at ^,00 
km/h. 
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WHEEL 

SYNCHRONOUS 

DRIVE LOOPS 

SUPERCONDUCTING 
MAGNETS 

I CONDUCTING 
SHEET TRACK 

Figure 7.  Schematic croas-section of train using hybrid null- 
flux levitation with a linear synchronous motor drive. 
Horizontal stability is maintained by the (non-null- 
flux) repulsion from the vertical pieces at the edges 
of the track.  Alternatively, a "V" shaped magnet 
track configuration could be used to derive a centering 
force from gravity, or another orthogonal null-flux 
system could be used. 
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I 
THRUST   LOOP  CONFIGURATION 
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—f 

w 11 

/. 

TRAIN MAGNET  CONFIGURATION 

Figure 8. Schematic diagram of track thrust loop and train 
magnet configurations.  An ac current is supplied 
to the normal metal track loops; a dc supercurrent 
circulates in the train loopsT        ^current 
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CONSERVATION LAWS AND ENERGY RELEASE RATES 

D. Budiansky 
J. R. Rice 

Abstract 

New path-independent integrals recently discovered by 

Knowles and Sternberg are related to energy release rates 

associated with cavity or crack rotation and expansion. Complex- 

variable forms are presented for the conservation laws in the 

cases of linear, Isotropie, plane elasticity.  A special point 

concerning plastic stress distributions around cracks is dis- 

cussed briefly. 
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CONSERVATION LAWS AND ENERGY RELEASE RATES 

D. Budiansky 
J. R. Rice 

I.     Introduction 

The well-known J integral of fracture mechanics1'3'^ 

has been related to potential-energy release rates associated 

with moving or extending cracks in linear or non-linear elastic 

materials.  Some new path-independent integrals (or conservation 

laws) have recently been discovered by Knowles and Sternberg2. 

In this note these new laws are related to energy release rates 

associated with cavity or crack rotation and expansion rates. 

In addition, the conservation laws are displayed in complex- 

variable form for the case of linear, Isotropie, plane elasticity. 

Finally, an implication concerning plastic stress distributions 

around cracks is discussed briefly. 

II.    Conservation Laws 

Consider a two-dimensional deformation field for which 

the displacement vector u depends only on x, and x,.  The J 

integral <s J = (^(Wdx^T^^dÄ) where C is a closed curve in       i 
C 

the Xj, x2 plane, W is the energy density, and f*   is the stress        I 

vector acting on the outer side of C.  The J integral is actually 

the first component of the vector V 

r 
-124- 

I 

J 



: 

: 

: 

: 

Jk " C£>(WVTiui,k,d£ <i*) 

where ji is the unit outward normal to C, lying in the same 

plane.  Each component of J vanishes (trivially for J ) for all 

closed paths C bounding a region in which W depends only on the 

strain r^j • ^i,j+uj,i^/2' and in which the stresses o.., re- 

lated to Tj on C by ai.ni, satisfy 

On     = 1 ^w . aw 
0ij ^ 2 ^ + ^   ' 

and oi^i = 0.  This implies hat ^ (a = 1,2) has the same 

value, not necessarily zero, for all paths that enclose a hole 

or crack. 

The new Knowles-Sternberg integrals, in 2-D, are 

.ij(Wxjni+Tiuj-Tkuk,ixj)dJl (2a) (K 
and 

M •■ (J)(Wxini-Tkuk>ixi)d£ (3a) 

C 

where e^ is the alternating tensor.  Under the same conditions 

specified for g, L vanishes if, in addition, W depends only on 

the scalar invariants of n^.  For M to vanish it is necessary 

that W be a quadratic function of the components of n.j. 

The results apply not only for any combination of plane 

and anti-plane straining, but also for the 2-D theory of 

generalized plane stress in which u and a denote thickness 
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averages.  Also, with suitable redefinitions of the basic 

variables, J and L vanish when geometrical non-linearity is 

admitted2«1; and if W is a homogeneous function of degree m 

in the strain components, M will 4till vaninh if it is redefined 

by adding the quantity (m-2)T.u. to its integrand. 

In three dimensions the integrals generalize tu 

JK  " |(WWi,k,dS (lb) 

S 

Lk " lLkij(WxjVTiuj-Ttui,i)Cj)ds (2b> 
s 

M - |M|B|'I*4«« l^l^^Ni Ob) 

where S is a closed surface with outer normal Q,  and analogous 

conservation theorems have been shown to hold by Knowles and 

Sternberg. 

III.   Energy Release Rates 

Eshelby3'" and Rice* have shown that J. can be inter- 

preted as the energy release rate when a void or a crack tip 

is translated in position relative to a material body.  We show 

that L. and M have similar interpretations here. 

Consider a 3-D elastostatic boundary value problem 

associated with the material contained within the surface S-fs, 

for which the portion s of the boundary is traction-free, and 

external loading is imposed only by tractions on S.  Without 

changing the boundary conditions on S, contemplate the contin- 
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Q 
I! uou»ly v«yi..., M«MM of .t.tlc .olutlcn» for tho Um •■ 

g u ,cn<.r.to<l .. t.» .p.tl.l .p-clflctlon of . I. varied with a 

■ tl-a-llk. par^t.r t.    The potential energy of the ay.t-- at any 

I 
U vJ(t) ^  O?   s     ) 

where V(t) Ü the volume enclosed by       ^^—^.      / 

84>s(t) «nd Blul li the potential of 

the loading »pecifird on S.  At each 

point lr V(t). W It a function of the time-varying .traini 

compatible with u.  Then 

fli ft . [ Ädv - ^ (Blyl) ♦ ( w v^d. 
0    v(t) iHj 

where vi denotea the "velocity" of pointa on • and mi is the 

current outward normal to a. (Note that only the normal com- 

ponent of vi ia determined uniquely by a given motion of the 

cavity boundary.)  But by the principle of virtual work the 

firat two terra in n cancel (aisuming that ^ is an admissible 

function in V(t), so that 

R .  w v^da 

j   ij This result has been derived,  less concisely,  by Rice and 

n Drucker'. 
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Next, suppose that s is the boundary of a cavity, and 

let v. ■ 6..; this corresponds to a conceptual translation of 

the cavity with a unit velocity in the i direction.  Let n^^ = -n^ 
• 

be the unit inward normal en the cavity surface; then C| I -n is 

the rate of energy release per unit of cavity translation in the 

i direction, and is given by 

q - j W n^s 
s 

But by the first conservation law (lb), we have 

ii  = Ji (1c) 

wherein the integral in J. can be calculated on any closed 

surface surrounding the cavity.  This last equation is Eshelby's1 

result, and takes the same form as his equation for "forces" on 

point defects in solids'*. 

Next, consider a unit angular velocity about the i axis 

of the specified cavity wall; then v. ■ "Si^k^fc» and this leads 

to the result 

q = -Li (2c) 

for the rate of energy release per unit cavity rotation about 

the i axis (with the usual right-hand-rule sign convention for 

rotation.) 

Finally, let the cavity boundary expand uniformly 

according to the rule v. = x..  This gives the energy release 

rate 
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C - M (3c) 

Here the rate is with respect to relative scale change dl/l, 

where I  is any characteristic length of the cavity. 

The 2-D versions of these energy release relations, 

for plane or anti-plane conditions, are self-evident. 

Since the final results are expressible as integrals 

over surfaces or curves off the cavity boundary, there is no 

reason to doubt their validity when the cavity is a crack. 

In 1-D crack studies, the J (-J,) integral has bann 

exploited for closed paths 

of the type shown in the ad- 

jacent sketch.  Since the 

integrand vanishes on the crack 

edges, it follows that the J 

integral has the same value for 

all opei.' paths connecting any 

points A, B on opposite sides 

of the crack, as shown in the 

second sketch.  In this case, 

the integral provides the energy release rate per unit crack tip 

extension1*'. 

IV.    Complex Variable Forms 

In Isotropie plane elasticity, the standard complex 

potentials ♦(z) amd iM*) are analytic functions of 2 - x+iy 

related to the stresses by 
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0ll ♦ 0II ■ 2<♦,•f♦,) 

0,,  -  o,,   ♦  210,,  -  2(t**'»V) 

The  following  results have been durivod  for plane Rtrcss: 

,   ♦ iJ2  - ~mj(*,)'d* -  2(J)*^,d2| (Id) 
C 

C 

■ I ■Kw1 (*-*r)dz 
(2d) 

M - | Irorfj^'H/'dz (3d) 

where E is Young's modulus.  For plane strain E should be re- 

placed by E/(l-v?), where v is Poisson's ratio.  In the deri- 

vation of each formula, it was assumed that the region within 

C was free of any resultant forces, so that the potentials ; 

and ij« were single-valued. 

If the integration path in (la) is open, extending 

from A to B, the extra quantity 

must be appended to (Id).  Thus, the J integral, when taken 

around a crack tip, is just 

D 

J - | Im (j l(♦,), ♦ 2*,i|»,Jd2 ♦ (£(♦•)')*) 
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Similarly, oxtrn terms appear in (2d) and (3d) If the inte- 

gration paths in (2a) and (3a) are opon. 

In the case of anti-plane shear, thr relations 

provide the stresses and the displacement in terms of an ana- 

lytic function wU); G is the shear modulus.  Then formulas 

(lc), (2c), and (3c) can be written as 

4 

I 
i 
II 
0 
.. 

Li j, - U, - -^(^(«'j'dz 
c 

and 

C 

The same formulas also hold for open paths. 

V.     Crack-Tip Stresses in the Plastic Range 

In conjunction with the simple deformation theory of 
r « 

plasticity, the J, integral has been used to calculate asymptotic 

plastic results*'?", for so-called "small-scale yielding" near 

the tips of cracks loaded in Modes I, II, and III.  (Mode I, 

in the jargon of fracture mechanics, moans crack opening, 

and Mode II is shearing parallel to the crack» in each case, 

the loading and geometry is symmetrical about the crack.  Mode 

III is anti-plane shear.)  In these solutions, the donHnant part 

of the singular solution near the tip in the far ,1 .un ic ranqe 
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is determined to within a scalar factor; the factor is then 

found from the invariance of J, evaluated for paths around the 

crack tip at small and large radii, where conditions are, 

respectively, purely plastic and purely elastic.  But this 

method has been successful only for loadings that are purely 

in one of the throe modes mentioned.  Thus, for a mixture of 

Modes I and II, two scalar quantities are needed to establish 

the stress distribution near the crack tip, and the J, integral 

does not supply enough information for their determination. 

Unfortunately, contrary to some initial hopes, use of 

the new L integral does not appear to supply the missing data 

in mixed-mode cases.  It does, however, provide an unexpected 

result. The earlier pure-mode solutions indicated that W may 

be expected to vary inversely 

with the distance r from the 

crack tip.  Now consider the 

evaluation of L, for a mixed- 

mode situation on the path 

shown.  Since L has a bounded, 

unique value for all paths enclosing the crack, and since the 

contributions to L due to the small circles remain bounded as 

their radii shrink to zero, it follows that 

J  x[W+-WJdx 
crack 

must be bounded, where U+ and W_ are evaluated on the top and 
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I 
bottom faces of the crack, respectively.  This means, therefore, 

1       that the singular, (1/r) parts of W must be equal at opposing 

points on either side of the crack. This is surprising when 

one considers arbitrary mixtures of Mode I and II.  On the 

crack, W depends only on j« j in simple deformation theory. 

Hence, the equality of W+ and w_ near the crack tip implies that 

the ratio of the dominant singularities in (o )  and (o )    must, 

in all mixed-mode cases, be either 1 or -1. This ratio is +1 

for Mode I and -1 for Mode II.  If, then, one imagines the 

loading mode to change continuously from I to II, this ratio 

will have to jump suddenly from 1 to -1 at some particular mode 

mixture. 

The equality of the (1/r) contributions to W on opposite 

sides of the crack must persist even if some Mode Til, which has 

a Txz contribution to W, is also present.  It may be noted, 

finally, that these conclusions could have been reached by a 

consideration of the J2 integral. 

. 
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APPLICATION OF A Dl. SCT MODEL 

TO VITREOUS    IDS 

R. A. Muggins 

Abstract 

The translation of the concepts of defect chemistry 

develuped for crystalline solids to the descriptioi. of the 

structure of one class of "amorphous" materials« the vitreous 

oxides« is discussed. Of specific interest are the types and 

concentrations of unusual local structural configurations and 

the influence of oxygen activity and solute concentrations. 
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APPLICATION OF A DEFECT MODEL 

TO VITREOUS SOLIDS 

R. A. Muggins 

Introduction 

Partly as a result of recent progress and controversies 

routing ro various switching and memory effects in non- 

crystalline semiconductors, greatly increased attention is 

presently being directed toward understanding the structure 

and properties of a wide variety of "amorphous" materials. 

One of the obvious procedures that is being followed in many 

quarters involves the investigation of the extent to which the 

concepts and tools that have been developed to a considerable 

degree of refinement for use in other areas, such as the -1 

physics of crystalline metals and semiconductors, can be ^ 

applied to tho study of solids which do not have structures 

with long range order.  Although there is much to be gained ] 

by building upon this knowledge base, one has to be quite ^ 

careful to «void blind translation from crystalline systems 

without giving attention to their appreciable differences, as 

well a» their similarities. 

One of the obvious Important differences that is found 

between these two general class.» »C materials Involves the 

relative Importance ot short range, compared to long range, 

interactions.  As a result, mcl.-ls Mi tools that relate more 
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directly to short range or localized features and phenomena 

should be particularly appropriate to investigate with regard 

to their application to noncrystalline systems. 

A general concept that has been especially valuable 

_       in dealing with many phenomena and properties in crystalline 

insulators and semiconductors is what is sometimes called the 

defect model of the solid state.  The basic approach that is 

used involves the focussing of attention upon the description 

and behavior of structural perturbations; that is, upon devi- 

ations from the normal or "ideal" structure.  Deviations from 

the normal regularly repeating structure within crystals 

involve linear defects (dislocations) and so-called point 

defects, such as vacancies, interstitials, substitutional 

atoms or ions, etc.  In the case of "electrically-active" 

solids one of the powerful techniques that has been developed 

for describing and handling such structural features and the 

properties that relate to them is known as defect chemistry. 

In this approach, structural defects are treated as quasi- 

chemical species, and many of the standard techniques of 

chemical thermodynamics and kinetics applied to them. This 

has been a very useful methodology, and has helped achieve 

an understanding of many of the structure-dependent properties 

of crystalline solids.  It has been particularly valuable and 

straightforward when dealing with materials in which the 

individual defects can be considered to be essentially non- 

interacting.  Defect interactions can also be handled by making 

. 

a 
a 
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use of the same procedures employed in concentrated solution 

theory, but at the price of a reduction in simplicity. 

One group of amorphous materials to which this approach 

seems most appropriate involves simple vitreous, or glassy, 

oxides.  On the basis of relatively recent experimental work 

using optical spectroscopy, EPR, NMR and sophisticated X-ray 

diffraction techniques, it is now well recognized that such 

vitreous materials contain very well-defined local configu- 

rations.  These local structural arrangements are virtually 

identical to those found in similar crystalline solids? this 

has specifically been pointed out for silicates and berates.1-5 

A start has already been made toward the application 

of the principles of defect chemistry to such simple vitreous 

systems,6"8 using the "structon" as the elementary structural 

unit.  Each type of structon'"12 signifies a particular type 

of atom with specified kinds and numbers of close neighbors. 

The overall structure of a vitreous material can be expressed 

as the sum of all structons present, both those which are 

"normal" (analogous to the regular repeating structure of a 

perfect crystal) and those which are different (analogous to 

crystalline defects).  The concepts and techniques of defect 

chemistry can be applied to these different structons, called 

"defect structons", as well as to electronic perturbations 

("extra" electrons or holes).  The equilibrium concentrations 

of the various types of defect structons, electrons and holes 

within the vitreous structure can be found as functions of the 
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macroscopic thermodynamic variables; specifically useful are 

the influence of temperature and the concentrations or chemical 

activities of the various chemical elements present. 

In the case of silica, the structure of both the 

crystalline2'3 and vitreous1 states can be expressed in terms 

of just two types of normal structons; a silicon surrounded 

tetrahedrally by four oxygens, and an oxygen bridging between 

two silicon neighbors.  Both of these struccon types can be 

treated as having a zero effective charge relative to the rest 

of the  structure. 

Deviations from this normal (or ideal) vitreous structure 

can be described either in terms of a set of defect structons 

centered about electropositive atoms (silicon) or a different 

group centered upon the electronegative species (oxygen).  The 

total close-neighbor structure can be determined by either set 

of structons, as they are directly related to each other, but 

in vitreous oxides it is more convenient to deal only with 

oxygen-centered structons. 

It has been shown6'7 that the most probable oxygen- 

centered defect structons in high purity vitreous silica are 

of just two types, oxygen atoms with either one (called a 

"non-bridging" oxygen) or three close silicon neighbors.  In 

these cases the formal charges associated with the structons 

are -1 and +1, respectively.  There is a large body of ex- 

perimental evidence for the existence of non-bridging oxygens 

in silicates containing cations such as H , Li , Na or K 
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in addition to the basic constituents silicon and oxygen.  The 

second type of defect structon has not yet been reported ex- 

perimentally in Si02, undoubtedly because of the practical 

difficulty of obtaining silica without the presence of small 

quantities of such additional cations.  Recent observatxons•»•- 

that Ge02 can contain a number of percent excess Ge indicates 

that a positively charged structon should be observable in 

that material. 

A set of symbols has been introduced' to describe both 

the normal (background) structons and the defect structon 

species present in vitreous silica and dilute silicates.  These 

are illustrated in Table I. 

General Methodology Used in Calculation nf Defect Eguiiihr^ | 

Analogous to the procedure normally followed in the 

defect chemistry of simple nonmetallic crystals, defect \ 

equilibrium in vitreous oxides can be expressed in terms of 

quasi-chemical reactions involving the pertinent defect ' 

structon species.  Standard thermodynamic treatment results | 

in law of mass action expressions in terms of the chemical 

activities or concentrations of such species. 

If proper attention is given to the construction of 

these quasi-chemical reactions with regard to both mass and 1 

electrostatic charge balances, a completely rigorous result 

is obtained in terms of the activities of the pertinent species. 

Translation from activities to concentrations involves tho 
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introduction of assumptions, as is the case with crystalline 

materials.  Because of the relative importance of short range, 

rather than long range, interactions in the common vitreous 

materials, it is reasonable to expect simole linear relations 

between activities and concentrations in such systems to 

remain valid up to quite large concentrations. 

The selection of the appropriate quasi-chemic 1 

reactions to be used to solve defect equilibrium problems is 

straightforward.  The Gibbs phase rulo indicates that at a 

specified value of total pressure and temperature a system 

in equilibrium is completely determined if a number of com- 

positional variables are specified that is one less than the 

number of chemical components present.  For this purpose, we 

can consider each chemical element to be a component  Thus, 

in a binary system such as pure silica, in which the components 

are silicon and oxygen, one composition-determining relation 

is needed to establish the thennodynamic state, and thus the 

concentrations of all the structural rpecies present, if the 

pressure and temperature are specified.  In a ternary system, 

such as sodium silicate, two such composition-determining 

relationships are needed in addition to the pressure and 

temperature. 

These compositional relations, which can be considered 

as thermodynamic constraints, can be of various types.  The 

concentration (or chemical activity) of one of the components 

(or one of the structural species) is one type of such 
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relation. The ratio of specie concentrations (or activities) 

is another.  In some cases, the concentrations or activities 

of species are determined by equilibrium with an adjacent phase 

of known properties and the constraint can be expressed in 

terms of a quasi-chemical reaction across the phase boundary. 

In addition to these composition-determining relations, 

other independent relationships are needed, as the total number 

of constraints must equal the number of structural species 

under consideration. 

A second type of independent relation involves the 

formation of conjugate defect pairs. One of these is electron- 

hole pair formation. Another is the formation of a pair of 

structural defects.  (In the application of defect chemistry 

to crystalline solids these latter species would be vacancies, 

interstitials, etc.) Obviously, the selection of the specific 

defects to be included in this defect pair formation reaction 

depends upon the disorder or structural model that is being 

used to describe the vitreous state. 

One further constraint must always be considered when 

treating defects in nonmetallic materials.  This is the 

requirement for electrostatic neutrality; that is, the devi- 

ation in electrostatic charge balance contributed by the 

presence of all the negatively charged defect species must be 

balanced by that contributed by the presence of the various 

positively charged species. 

As a general rule, the total number of defect species 
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which are involved in the pertinent equilibria in «imple two- 

component systems within any given range of chemical constitution 

is four.  Two of these four are structural defects; the other 

two are electronic.  As a result, four independent relations 

need to be solved simultaneously in order to determine the 

concentrations of this group of defects.  One of these is al- 

ways the electroneutrality condition; the second is the 

electronic defect pair formation reaction, the third is a 

structural defect pair formation reaction, and the fourth is 

some type of composition-determining relation.  If other defect 

species are also assumed to exist (including defects with 

different ionization states or effective charges) further in- 

dependent reactions are obviously required. 

After an appropriate set of simultaneous equations 

has been selected, the concentrations of all pertinent defect 

species can be obtained as functions of the prescribed thermo- 

dynamic variables.  For purposes of simplification, it is 

often found useful to approximate the electrcneutrality con- 

dition by a simple equality between the concentrations of the 

two dominant defects (one negative and one positive) in any 

given range of composition.15  By writing this simplified 

electroneutrality condition, and expressing the law of mass 

action expressions for the appropriate quasi-chemical reactions 

in logarithmic form, a simple set of simultaneous linear 

equations results, which can easily be solved.  A number of 

examples of the use of this method have been presented.1*"20 
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Application to Defect Equilibria in Pur» Vitreou» Silica 

Tho calculation of the defect concentration« in pure 

silica7 involves the simultaneous solution of a set of four 

independent equations: 

Ki - (e") Ih+], (1) 

Kd " l'""^ 1<«"*'>1» (2) 

K0 - hs-H' Ih*]' p-H , (3) 

and 
{<s->l ♦ le-J - l<s*>l ♦ lh*), (4) 

where the K values are temperature-dependent equilibrium 

constants and the square brackets indicate concertrations. 

Simultaneous solution produces the following expressions for 

the pertinent defect concentrations! 

r Kd * F i* l*'] ' Ki [jTFprTTj 

•■"   L "a ♦F J   ' 
-r(Kd ♦ rn1! 

and 

1    *       J    '          Ki    *   P     J 
'K.   + F    -}** 

where 

1 •■   P*          dlF(Kd   1  F)J 

F   -   tK0p,»l,» 

(5) 

(6) 

(7) 

(8) 

(9) 

and p represents tho partial pressure of oxygen gas. 
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Th«.e equations can be simplified considerably under 

certain situations.  For example, because of the large band 

gap, it is reasonable to assume that the concentrations of 

the two types of defect structons are much greater than those 

of either electrons or holes over a broad range of intermediate 

values of oxygen partial pressure.  When this is the case, the 

electroneutrality relation can be approximated by 

(10) 
(<8->l ■ l<s+>l 

and 

Kd >> F >> Ki   , 

so that equations (5-8) simplify to: 

K^ (11) 
le"] - -"I— 

(12) F 
lh+] - -*r 

d  , (13) 
I<s->) - V 

and (14) 
(<s+>J - K^ 

Thus, «e .ee that in this range of oxygen partial pressure 

n the ooncentr.tions of both minority defeots (eleotrons and 
U       hoies) depend on the nagnitude of the oxygen parti«! pressure, 

while the oonoentrations of the dominant defeot struotons do 

not. 

T-,i of the tanaa °f a Third component 

Even nominally pure silica typioally oontains st least 
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one other element in addition to silicon and oxygen, and many 

silicates contain appreciable concentrations of one or more 

other species.  The most common case involves the presence of 

monovalent cations such as lithium, sodium, potassium, or 

hydrogen.  The presence of the latter is related to the frequent 

observation of OH" bands in the optical absorption spectrum. 

The presence of these other species in solution in the silica 

must be taken into account in considerations of the structure 

of the silicate in terms of its defect description.  In order 

to specify the defect equilibria when an additional species is 

present, an additional thermodynamic constraint must also be 

stated, increasing the number of equations to be solved simul- 

taneously.  The following cases can be considered: 

1. An additional ionic species is present in fixed 

concentration. This involves the use of an equation of the 

form 

IM+I " M mi 

where M is a constant. 

2.  An additional species is present whose chemical 

activity is determined by equilibrium with an adjacent phase, 

either external or present as a precipitate. This involves 

the use jf a quasi-chemical reaction of the form 

N ^ N+ + e- 

which leads to an equilibxium relation of the form 
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[N+] - 7r=T ("' 

3.  The activity of the oxide of the third component 

could be specified.  In the cas  of a monovalent cation L* 

this would mean specification of the activity (related to the 

concentration) of L20.  The oxide activity is related to the 

activities of both the cation and oxygen by the formation 

reaction 

2L + «jO, X  L20 

which leads to ti c law of mass action relation 

V 
K. 0 -  2_r (17) 
Ll0   (aT)

2p^ 

Furthermore, if essentially all the L is ionized (present as 

L4) we can write 

L :  L* ♦ 

and 

K . IhlUsll (18) 
L     aL 

Substituting into (17), we see that 

OK    • 
L'0  p"1 (L^lMe-J' 

(19) 

which can be rearranged to give 

..♦,    1 \KL    aL,o| 
«■ ' L*L,0 p"» J 

(20) 
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The way that tnese different relations enter the defect 

equilibrium calculation can be eeen by examination of the 

electroneutrality condition, which can be written as 

le-J •»• [<s->l - lh*J ♦ [<•*>}  ♦ tM^J (21) 

where [M+l can be replaced by either [N*l or (L*l.  If substi- 

tutions are made to write this equation in terms of the electron 

concentration {•'It   it can be written as 

«•«[»♦d'^lv3^**] (22) 

where Si - M/[e"l 

S2 - KNaN 

Si 

for case 1» 

for case 2,  and 

for case 3. 

Solving  for   [e"l 

[e-1 K.+F v   l     ' 
[Y) (23) 

where 

5+F        p     IJ 
(K.^F)(K.^F) 
-^ =—i  •»• 

(Kd+F) (K^P) (Ki^lfKL?   aL>ol>r| KL     aLtp| 
L.O   ^" 

for  case  1, 

for  case   2,   and 

for  case   3. 

-148- 



Sinula; relationr can be derived for the concentrations 

of the other defect species, producing the following set: 

I 
1 

ih*j - (K^fmi-1 Ml 

1<S^>I - -i-ji  (Yj-> (26) 

and either 

CH*J - H, (15) 

^ - (VN)[^7)l^r,   ' ^ 
or p      -.jj 

In the Important central region of oxygen partial 

pressure, 

K. >> r >> K4 

and these relations can be greatly simplified, to give 

le-J - ^)|t] (2») 
M 
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l<«->) •  tz) 

|<gHj  > Kdizj -1 

where 

■ 5 ♦ [«,■ ♦ "x]" 

1. - [Kd •  (^)  ^^ 

■[■ K^.I-I^       ^0 
a* 

ij I   L.O    p^   j   I 

A1«0.   in  thi«   ranye 

(M*J   -  M, 

and 

(31) 

(32) 

(15) 

(33) 

(34) 

Influence of Oxygen Partial Preiaura on Solubility 

Prom these relations one can readily obtain information 

about the influence of the oxygen partial pressure upon the 

solubility of a constituent in a ternary silicate system.  If 

the species N precipitates as elemental N, for which the value 

of a„ is defined as unity, the solubility of N is directly 
N 

four.*  from equation   (33)   to be 

IN*), max fh ■ ?r V 
IT (35) 
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This can be written as 

if 

'"'W ■ 
KNP 

[Ki 

* 

»   Kd 

(36) 

and 

if 

[N+] .  KMF 

max  v  v ** 
KiKd 

(37) 

K, >> a 
V 
K 

There is also a temperature dependence to the solubility, as 

each of the K values is expected to vary with temperature 

according to a relation of the form 

r 

I 
1 
1 

K - Ko exp(-Q/RT) (38) 

On the other hand, if the solute precipitates in the 

form of its oxide, its solubility is found from equation (34) 

by setting the oxide activity equal to unity.  Using the symbol 

if 

1  Jmax 
o  L 

■ «I 

o K.- 1^ 

Ki ^,0 

Ki KL20J 

>> K 

(39) 

: 
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and j, 

IL+J    B   
Ko  KL  . (40) 1  'max  v    v        v * 

Ki KL20 
Kd 

if     Kd » 
K ^ K. o   L 

"5 
Ki KL20 > 

Thus it is seen that the oxygen partial pressure has 

an important influence upon the solubility of a third component 

in silicates if that component precipitates in elemental form. 

On the other hand, if it precipitates as an oxide, the solu- 

bility will be independent of oxygen partial pressure. 

Influence of One Solute on the Solubility of Another 

The presence of one solute can influence the solubility 

of another.  We can consider the influence of a fixed concen- 

tration of M+ upon the solubility of N+.  The latter species 

can be assumed to precipitate as elemental N, so that its 

solubility is reached when aN is equal to unity. 

In this case there are six defect concentrations to 

consider, and therefore must be six independent relations. 

These are 

Ki  = [e-]lh+] (1) 

K,  =   [<s-^][<s+>] (2) 
a 

Ko   -   l<s">]7[h+]2p",s (3) 
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. 
and 

[M+]   » M 

IN+] 
e"] 

[e-]   +   [<s->]   =   [h+]   +   [<s+>]   +   [M+]   +   [N+l 

(15) 

(16) 

(41) 

Simultaneous solution of these relations results in 

the following expression for the solubility of N, 

[N+l 
WF) 

max OH" 
where 

M2 ^ (Kd+F) {K^F)        KN(Ki+F) 

(42) 

(43) 

0 
Ü 

a 

This can be simplified somewhat within the important practical 

range in which   K, >> F >> K. 

to give 

tN+]_ • ??- V 
max  K. 

M 4. 
T + Kd + 

KNF 
h' 

KiJ J 

-1 

Further, if 

M' 
T" Kd 

: 

ana 

M2    
K
M
F 

Ö this reduces to 

1  Jmax  K. M 
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Polyvalent ion« 

AUhough th£ ca8e8 that have ^^ describ^ ^^ ^ 

invdve „onovaient aolute  lonG 3inilar consideratlon> 

for poiyvaient species.  The „suUs, altho„gh dif(.rent. ^ 
be sinner to those found „, iiionovalent ^^ ^ ^ 

be included here. 

»edox Reactions in »<■■,■.„.„ Meteri.L 

It has ion, been known .hat many ion. can Under,o 

changes in valence or effective cherge in oxide glasses " 

su^rie. of the early mrk  ln thl. „„ hive ^ ail>M-„#,i 

bUt POlnted OUt by ^nston-, insufficient attention 

«« given to the achieve.»« of eguilihriu« in .any cases.  A 

Xist of nultivelent ions that have been shown to undergo redox 

reections in silicates is presented in TebU 11. 

The fectors involved in the chenge of ioni.ation state 

of solute species within vitreous „ateri.ls should be enable 

to treetnent by the s^e technigues described on the previous 

pages.  This will not be pursued h-r« K pursued here, however, but will be 
included in a subsequent report. 

Discussion 

A general methodology ha, been develop-d (or the 

treatment of structure! eguilibrta within vitreous materiel, 

•uch a. the oxide siUc.te, ane.ogou. to the defect chemistry 

which has been successfuUy used for many crystalline matorla.s 
Several examPJes h^  been prcsentKl of th# ^ ^ ^^ 
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«•       techniques; others will follow in later reports.  One of the 

conclusions that results is the significant influence that the 

oxygen partial pressure during melting should have upon the 

structure and the properties of vitreous oxides.  Although this 

factor has not received a great deal of attention in glass 

technology to date, the few studies have been reported te^d to 

confirm the validity of this general approach. 
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TABLE I 

Structural Unit8 in Vitreous Silica and Dilute Vitreous 
Silicates Containing Oxides of Monovalent Cations l' 

Q Structural Species   Structon Formula Structural Formal Simplified 
Mä3£*SL~  fibifiaa Notation 

Normal Struetons 

1. Predominant Si- 
centered structon ^iM'O' ')> 

l 
0 

-O-Si-O- 
1 

2. Predominant 
Oxygen-centered 
■tructon (bridging 
oxygen) 

<0'•(2Si)> 

o 
1 

Si-O-Si 

Defect Structons 

f 
-O-Si-O" 

i 
0 
1 

1. Silicon-centered 
structon with one 
oxygen neighbor 
noabridging 

^1(0' ^•O' •)>. 

2. Silicon-centered 
structon with one 
oxygen neighbor 
forming a 3-way 
bridge 

^ip'O' ' ,0" ' ')> -O-Si-O : 1 s 
3. Nonbridging 

oxygen structon <0, (Si)-> Si-0" 

+1 

-1    <s~> 

4. Most probable 
oxygen-centered Si 
structon with »•••*••,•»A          J. / 
positive charge ^•••(3Si)+>      si-0+v    +1     <s+> 
(3-way bridging Si 
oxygen) 

5. Monovalent cation  <M'f> +t     <M
+
> 

(eg. Na, K) 

Electronic Defects 

1. Electron 

2. Hole 

-1      e 

+ 1 
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TABLE II 

Ions With Variable Valence Within Silicates 

Ion References 

Ce3+ - Ce1-1- 22-27 

Co2+ - Co3+ 23, 28 

Cr2+ - Cr3+ 22, 24, 25, 29 

Eu2+ - Eu3+ 30 

Fe2+ - Fe3+ 22-21, 31-34 

Mri2+ - Mn3+ 22-24 

Ni2+ - Ni3+ 23 

Ti3+ _ Ti
t*+ 23 

23, 35, 36 

23, 35, 36 

22, 24 

22-24 

22-24 

v3+ - V^ 

v-+ - V5 + 

A83 + - A85 + 

Sb3 + - Sb5 + 

Sn2 + - Sn^ 
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THERMODYNAMIC PROPERVIES OF LIQUID METALS 

J. L. Margrave 

Abstract 

As a continuation of the project started earlier, an 

extended effort has been made to collect the bast available 

data on the thermodynamic properties of liqu'.d metals, in- 

cluding heats and entropies of fusion, heat capacities and 

surface tensions.  Attention has been concentrated on the 

heats and entropies of fusion and the heat capacities in a 

search for parameters which would allow correlation and make 

possible reasonably reliable predictions for the many high 

melting elements yet unstudied — Cr*, Hf, Ir, Mn*, Os, Re, 

Rh, Ta*, W, and Zr -- as well as the hundreds of important 

refractory compounds and alloys.  A mutually consistent table 

of such liquid metal properties has been assembled and various 

corrleations are presented graphically. 

Special attention has been given to correlations of 

the entropies of fusion with structure parameters and the 

literature has been surveyed for information regarding theo- 

•rurrontly under study. 
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reticai approaches for uxPlainiu9 the ri.e of the .pocific 

heats of both elemental solids and liruld. f.r beyond the 3R 

predicted by either the Debye or the Horn-von Karman theori.., 

The predominant literature explanation is "anhannonic effects' 

but new experimental data* show strong correlations* with 

oloctronic configurations .>nd suggest that new calculations 

which take into account the actual densities of state, at 

high LemperatureB mi^ht yield more realistic electronic con- 

tributions to the specific heat than those usually predicted 

by the equation 

«: (i|W« e* " -TT- T - YT 

when applied in the evaluation of y from low-temperature 

heat capacity data. 

♦Various publications making use of lovitatio.. o-io-i«. 
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THEKHÜDYN>MIC PHOPErfTlES OF L»yUIÜ METALS 

J. L. Hargravu 

An axploration of the chenical and physical literature 

reporting theorewical and experimental studies of the high 

tonperature properties of liquid metals has been conducted.  A 

number of basic references were located and these are cited at 

the end of this report.'"' 

It is also worthwhile to recapitulate the conclusions 

fro« a paper" which represented a summary through 1970 of the 

available literature data for the heats and entropies of fusion 

and heat capacities of the various liquid metal«.  Basically, 

the report concluded that one could find relatively little 

experimental data on metals melting above 2000° except for the 

very recent work enanating from Rice University by the technique 

of ievitation calorimetry.  The data were relatively few but 

did indicate the possibility of some periodic correlations for 

estimating "best" values when no experimental data were available. 

During the interim, more information from lovitation studies has 

become available'1 and also a number of correlations have been 

tested for the various parameters, including correlations between 

heats of fusion and atomic numbers as contrasted with melting 

points and atonic numbers between entropies of fusion and atomic 
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numb««, and between heat cepecltiei* of »deal qeees or heat 

capacitie« of liquid metal« and the Gibba free energy function 

for ideal qa.eou. atom« with a «tandard reference temperature 

of 2000»K being u«ed for the qa«eou« «pecie«.  (Piqure« 1-8). 

The«e correlation« and conclu«lon» therefrom, form the baain 

for a new table of thermodynamic propertie« which i« includrd 

in this report, Table I« 

In tie cour«e of inve«tiqaticn it ha« become clear that 

there are «everal fundamental type, of que«tion« about heat 

capacity variation« and hlqh temperature« which arc not anawer- 

able by mean« of currently publiahed theory.  The que.tion« can 

be bett under«tood by referrinq to Fiq. 9, a diaqram for 

•lemental Li. taken from a review article by boreliu«' who ha« 

been actively calling attention to thi« problem for the paat 

twenty year«.  A« one advance« up the Cp v« T curve for a 

typical «olid he expect« to find increaainq Cp a« is consiatent 

with either the Einatein, Dobye or the more refined Born-von 

Karman theorie« and eventually at temperature« which are hiqh 

compared with the Debyc temperature one predict« Cp should 

approach the claa.ical limit of 3R.  Thi« «eems not to be *i 

ca«e for practically all of the metal«.  In lookinq at the 

tabulated data, about the only element« for which Cp stays 

anywhere near 3R at the melting points arc those whose solid 

lattice is diamond structure -- C Ge, and Si.  These elements 

show C  values for the liquid in the ranqe of 6-6.6" and it is 

conceivable that current theory would predict deviation from 
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UM OlMWintl 3K at Migh tei^craturoa of   t,,*■ or'Jer of 10-20 

percent «o that thuse values are at least consistent. 

It is important to recognize that the sources of the 

10-20 percent deviations alh vod by current theory and these 

are the contributions of anharminic effects duo to the unusually 

large lattice viLrations expected at high temperatures.  These 

deviations, which in magnitude are about 10 percent, should 

load to an approximately linear variation in C as i function 

of temperature .^nd one would anticipate a still smaller rate 

of change for the derivative of C as a function of temperature 

due to the highor-order anharmonicity terms.   The other con- 

tribution to the specific heat of all temperatures is the 

electronic contribution given normally by the formula Cp • yT 

where Y i* composed of a group of constants including the 

Fermi-temperature in the denominator and typical values for 

Y run in the range of 10"* calories degrees"'.  Again, this 

term leads to a linear variation in the heat capacity with a 

total change in the absolute value of C of approximately a 

few tnoths per thousand degree temperature change.  Neither of 

these factors as currently interpreted gives any kind of 

explanation for the tremendous deviations of C which are 

observed in real metals even at relatively low temperatures 

like 300-500*0.  For example, the alkali metals which melt in 

the range 300-500oC, all show C values of greater than 7.  The 

situation is even worse for the high melting metals and C 

values for soliJa and liquid metals ranging as high as 12 
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calorie« degrees"' mole"» «re curr^nfi» ., «re currently known from reliable 
experimental studies. 

Bor.liu.., who W,.„|..< and h„ di.cu.,ed ln great 

<i.t.U thi. ,cncral probU», trlc. lo oxplaln ^ ^^ ^ 

h..t .t r.t.. ,r<Mt.r lh4n pr<,.dlt;ted by ^ ^^^ ^ ^ ^ 

c.p.city on tH. .„u of „„.,„,„„, ^ po.t.Keltln9 phenc  

Thu.. in rtg. ,. ho idontifl., ^ „^ c^ and    M ^ 

«tiv. of tho« prc^ltln, .na po-t^.tln, proco.... .nd h<> 

.ccount. tor the U* v.lu.. 0( ^ ^ .u,9e.tlnq ^ ^ 

•tructuro ot th. cry.t-! U und.r,„ln, ._ „^^„.^ „„.^^ 

uP b,for. th. m mui  MUlng polnt ti ^^  ^^ ^^ 

MM continue .tructura! ch.n,.. occur .ft., «um,. Th<. 

«ddition«! .Uctronlc contribution i. c. .nd th„ h 
i» uo an<l the harmonic l.ttice 

contribution if c. 

area.: 

"h.r© .ppear to bo a»u» -mi   AI-*, " OB  ..vc.i dl.tin^ui.habl. problem 

(I)  The ri.e of cyolid, .u,ve 3,, ln the ,„„,. be)ow T   A 

PJot of Vr..,,-,«, .. T ,or .everal roaI „^^ ^^J ^ 

informative about the type of e,c...-funotion needed to e.pa.i,. 
this. 

(2)  The fairly 7ood correlation of AS  wifh .* " or ..bf with structure, except 
that the qualitative» t-i-on^ i.. q  itative trend is opposite that which one would 
predict.  Thus, 

"««• a'CC") ' "ft» 'h<--P' « "f us (cop) 

whiic the chance in coordination number is greatest for (bee.). 
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I 
(3) The large and essentially constant value for C (4) for 

many very high mcltinq liquid metals over ranges of 5C0-600oK 

to a precision of '0.5%.  Thus, if one considers the maximum 

deviations, the range for C  is much less than one might have 

predicted if either anharmonic cr electron contributions were 

contributing the usual linear terms to the high-temperature 

heat capacity. 

(4) The periodic variation of C 's for transition metals shows 
P 

a double-hump and correlates best with functions dependent on 

energy xovel configurations and the electronic partition function 

like C (ideal gas) at 2000eK or 
P 

fG,T - "•111 [—2L-5 J 2000*K 

for the ideal gas atoms. 

(5) The general failure of mass spectrometer methods to detect 

large concentrations of polymers over liquid metals*.  Typical 

studies suggest 1-21 or less «llnvr In equilibrium vapors, yet 

polymeric species would nave to be predominant in liquids to 

give the huge prumrlting and |JOM( inn I ( 1 ng effects observed.  Also, 

polymers In the liquH wuul.l hit suhjeiM in  dissociation with 

increasing tempei.iiui'  In .« In iiM.. UMII-m . ixpi» 1 ibr ium and one 

would not expect C  to be conslan« fet a Injuid of rapidly 

changing complexity.  i"  shtiuld ilecreaMe almost exponentially 

with T, at least foi an appie • iahle ranqe, after the molting 

point if the molecular complexity is really decreasing in the 

liquid. 

-167- 



«n «_*, mm .^ t dita and ^^ -Hrtto| 

of U«^ «t.. !>.■.! ^ ,.rtB prop.m.. „„ be ^^^^ 

How.v.r, «a„i„9ful corr.Utio„. c.„ „e „^ ,.,„„„ „^ 

of fusion and meltina ooinf *«^ t ^ 
' ^l"t   '"I  *""*"••  C (liquid .Ma,, and th. aibb. fr..-.ncrw factor( i^jj,  ^^^^^^ ^ 

M „ucui ^.ur.lllont n„d. ,„ ^^^  ^ u ^^^^ 

ncd«. on .la„ntt (r<m  th. ,roup. Urj Rh ^^ RU)I (M(> ^ ^ 

T.. «e M «, ind on sn, Ho and Lu to ^ oxtrapoUtions ^^ 

interpolation! Poro mliabls  w. . 
1..  Wh,n Pur« "»"'• «re undor.tood, 

on, en then con.idor th.., .„,. propertl.. ,„ ^^ ^ ^ 

r.fr.ctory compound, u.o c.rbid,., borid... nUrid(>. and 
silicid««. 
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TABLE I l. 

Therroodynamic Properties of Liquid Metals 

•^H- . AS, 0 (■ ,   at Ml 
Element MP 

K 
f US 

Kcal mole"1 
fus 

Cal deg"' mole"1 Cal deg"1 molc"' 

a 1234 2.6510.1 2.15 8.00(H) 
933 2.5810.03 2.76 7.55(H) 

Au 1336 3.0510.1 2.29 7.U(H) 
B 2303 (4.4-6.0) 11 .9-2.6) (7.8) (ID 
m 9b3 1.8310.1 1.86 (7.510.5) 
Bo 1557 3.510.2 2.25 7.04(H) 
M 544 2.610.05 4.78 7.30(H) 
C(gr) <4C73) (2512) (611) (6.2)(H) 
C(dia) (4073) (2812) (711) 
Ca 1116 2.010.1 1.79 7.00(H) 
Cd 594 1.5310.04 2.58 7.10(H) 
Ce 1071 1.30510.05 1.2« 9.01(H) 
Co 1765 3.7610.04 2.13 11.25(LC) 
Cr 2130 (4.0      ) (1 .9    ) (9.410.5 ) 
C« 303 0.5010.01 1.65 7.62(H) 
Cu 1356 3.11010.075 2.29 7.9(LC) 
Dy 1682 2.64310.2 1.57 11.93(H) 

1795 4.757 2.65 9.2S(H) 
£u 1090 2.2010.05 2.02 9.i:(H) 
Fe 1809 3.2410.06 1.79 10.35(LC) 

• it 303 1.33610.01 4.41 6.65(H) 
Cd 1585 2.40310.1 1.52 8.88(H) 
Gc 1210 8.810.3 7.27 6.60(H) 
Hf 2493 (5.7-6.8) (2 .3-2.7) (9.010.5) .. 
Hg 234 0.5510.005 2.35 6.806(H) 
HO 1743 (2.7      ) (1 .5   ) (10.5)(H) 

i In 429 0.7810.02 1.82 7.05(H) 
Ir 2727 (6.2-7.6) (2 .3-2.8) (9.010.5) 
■ 337 0.57110.005 1.69 7.68(H) 

1 La 1193 1.48110.05 1.24 8.2ü(H) 
Li 453 0.7010.03 1.54 7.26(H) 
Lu 1936 (3.0-4.8) (1 .5-2.5) (Uli) 
Mg 923 2.110.1 2.28 7.8(H) 1 Mn 1517 (3.0      ) (2 .0    ) (9.010.5) 
Mo 2839 8.3210.07 2.88 8.2(LC) 
Ka 371 0.6310.02 1.70 7.61(11) 1 Nb 2740 7.910.2 2.88 9.4(LC) 
Nd 1289 1.70710.1 1.32 11.66(H) 
Ni 1726 4.110.08 2.38 10.30(H) 
08 3045 (6.9-8.6) (2 .3-2.8) (9.010.5) 1 

-170- 



: 

ü 

filemunt 

Pb 
Pd 
Po 
Pr 
P^ 
Ra 
Rb 
Me 
Rh 
Ru 
Sc 
Se 
Si 
Sm 
Sn 
Sr 
Ta 
Tb 
Tc 
Te 
Th 
Ti 
Tl 
Tm 
U 
V 
w 
Y 
Yb 
Zn 
Zr 

TABLE 1 (continued) 

MP 
K Kcal mole"* 

AS. fus 
Cal deg"' mole -1 

C (i) at MP 
P , 

Cal deg"  mole" 

600 1.1510.03 
1825 4.0110.05 
519 (1.2-1.6) 

1204 1.64610.100 
2042 5.3010.15 
9Ti (1.9    ) 
312 0.52510.01 

3453 (8.0-10.1) 
2233 (5.1-5.7) 
2583 (6.1-7.2) 
1812 3.369 
493 1.510.3 

1685 12.110.4 
1345 2.1310.1 
505 1.6910.03 

1043 (1.9    ) 
J250 (7.5-9.3) 
1630 2.5810.10 
2413 (5.6-6.5) 
723 4.1810.3 

2028 (4.0-5.0) 
1940 3.7810.06 
576 1.0310.03 

1818 4.02510.05 
1405 2.036 
2193 4.0510.15 
3680 (8.4-10.8) 
1793 2.7510.1 
1097 1.83010.008 
692 1.7410.03 
2125 (4.8-5.2) 

1. 
2. 

(2.3- 
1. 
2. 

(1.9 
1. 

(2.6- 
(2.3- 
(2.3- 

1. 
3. 
7. 
1. 
3. 

(l.'J 
(2.3- 

1. 
(2.3- 

5. 
(2.0- 

1. 
1. 
2. 
1. 
1. 

(2.3- 
1. 
1. 
2. 

(2.3- 

92 
19 
3.0) 
36 
61 

) 
68 
2.9) 
2.6) 
2.8) 
86 
04 
19 
58 
55 

) 
2.9) 
59 
2.7) 
78 
2.5) 
95 
79 
22 
45 
85 
2.9) 
53 
67 
49 
2.5) 

7.32(H) 
9.1(U:) 
(911) 
10.27(H) 
8.7(LC) 
(7.010.5) 
(7.5)(H) 
(8.010.5) 
(9.510.5) 
(9.510.5) 
(10.57)(H) 
(7.0    ) 
6.10(H) 
(12.0)(H) 
7.10(H) 
(7.010.5) 
(9.010.5) 
11.11(H) 
(8.510.5) 
9.00(H) 
(Uli) 
11.9(LC) 
7.2(H) 
9.89(H) 
11.45(H) 
12.0(LC) 
(8.010.5) 
10.30(H) 
8.79(RSO) 
7.5(H) 
(10.210.2) 
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First-How Transition Metals. 

-172- 



• • 

.. 

3000 

2000- 

5 

1000- 

>  /. 

/^ 
Nb^6-65) 

y*7 Zr(48-52) 

Experimental Data 

\ Predicted Range 
forAHfu$ 

4 6 
AHfu8f K cal mole'1 

8 10 

Figure 2.  Correlation of Heats of Fusion and Melting Points for 
Second-Row Transition Metals. 
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1 

STRESS CORROSION CRACKING IN PLASTIC SOLIDS 

INCLUDING THE ROLE OF HYDROGEN 

J. J. Gilman 

Abstract 

Small changes in surface environments can change 

the energy needed to create a surface shear step.  Increases 

in this energy tend to shift a delicate balance between 

glide and cleavage initiation at a crack tip.  By inhibiting 

plastic deformation this causes an increased tendency for 

cleavage. Thus a material that is ductile in a vacuum can 

become quite brittle in the presence of certain surface 

active environments; particularly atomic hydrogen. 

The quantitative criterion for deciding whether 

flow or cleavage will prevail is the ratio of the appropriate 

glide plane's surface energy to the cleavage plane's surface 

energy. 

A survey of the strengths of the interactions 

between hydrogen and metals has been made.  Throughout the 

periodic table strong diatomic interactions occur.  At 

surfaces the interactions remain strong although they are 

somewhat weaker.  In solid hydrides they tend to be much 

weaker or nonexistent.  Thus the strength of the interaction 
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depend, on the mUl-^Ul  distance,  it is shown that for 

a typical transition metal the interaction with hydrogen xS 

strong enough to readily cause embrittlcnont. 
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STRESS CORROSION CRACKING IN PLASTIC SOLIDS 

INCLUDING THE ROLE OF HYDROGEN 

J. J. Oilman 

I.      Introduction 

The phenomenon of stress-corrosion cracking depends 

sensitively on various parameters of a system, such as the 

magnitude of the stress, the temperature, applied potentials, 

composition of the environment, etc.  Therefore, it is a 

"critical" phenomenon.  That is, it is associated with a 

balance between counter-vailing forces and small changes in 

the state of a system can shift it dramatically away from the 

balanced situation (Latanision and Westwood, 1970). 

Another characteristic is that the counter-vailing 

forces are very localized.  This may be concluded because 

stress-corrosion cracking sometimes occurs with great speed 

(of order 103 cm/sec), and because the fractured surfaces are 

often very smooth on a local scale (at magnifications of 

20,000 and more).  Both of these facts indicate that the 

volume of materials that is involved in the critical process 

is very small. 

Stress-corrosion cracking is observed in purely 

elastic solids (completely brittle); in elastic-plastic 

solids (semi-brittle); and in viscoelastic solids.  In the 

first class, which is typified by glass, the effect consists 
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essentially of stress-induced chemical decomposition.  This 

has recently been discussed by Tong and Gilman (1971) and 

will not be discussed further here.  The second case, which 

is typified by metallic alloys, is the one of primary present 

interest. 
In discussing stress-corrosion crackina, it is important 

to keep in mind that cracking cannot occur unless two condltionB 

are simultaneously satisfied.  One is the static energy balance 

or Griffith condition.  The other is the kinetic condition that 

the local driving force (normal stress) must be great enough 

to cause the solid to "break" at an observable rate.  Satis- 

faction of either of these conditions alone does not necessarily 

lead to fracture.  In the discussion that follows it will be 

assumed that the Griffith condition is always satisfied so that 

the behavior of the system depends on whether the local stress 

does or does not exceed the crhesive stress of the solid in the 

appropriate direction. 

For a purely elastic solid, when the Griffith condition 

is satisfied the local normal stress at the crack tip approxi- 

mately equals the cohesive stress of the solid.  (Keer, 1964) 

However, if the solid is ideally plastic this stress instantly 

relaxes to approximately twice the yield shear stress.  Or, if 

the solid is ideally viscoelastic, the local stress begins to 

relax toward zero at a rate that depends on the viscosity 

coefficient. 
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In a real solid, plastic or viscous relaxation occurs 

via the motion of dislocation lines.  The resulting plastic 

strain-rate that tends to relax the elastic stress depends 

on the instantaneous values of the local stress and the 

plastic strain (amount of plastic relaxation that has already 

occurred).  The result of this effect is that the local stress 

at a crack tip will not exceed the cohesive stress unless: 

a) there are no dislocations present locally and 

they cannot be nucleated rapidly, 

b) there are dislocations present but the local 

shear stress cannot move them, or they lie on 

planes that do not have the line of the crack 

tip as their zone axis, 

c) dislocations are present and moving but the 

crack tip is moving at a velocity that does 

not allow enough time for adequate stress 

relaxation at the crack tip (Oilman, 1966). 

Since stress-corrosion does not necessarily require high 

crack velocities and this discussion concerns plastic solids, 

cases (b) and (c) above are ruled out.  Case (a) remains 

for further consideration.  The key parts of statement (a) 

are the need for dislocations locally at the crack tip, and 

the question of whether the high local stresses associated 

with a sharp crack can or cannot nucleate dislocations at 

the tip which move outward from it and thereby absorb energy 

and blunt the shape. 

-185- 

D 

1 

0 



II-     Importance of the Crack Tip 

For reasons given in the second paragraph of the 

Introduction, occurrences at and very near a crack tip are 

especially important for stress-corrosion.  it is difficult 

to separate the phenomena there because the local stresses 

which cause plastic flow are in equilibrium wxth the local 

surface forces.  Therefore an observed effect that is induced 

by a change in the environment might result either from a 

change in the surface forces or from a change in the plastic 

flow rate at constant stress.  Perhaps this can be understood 

better by considering an approximate expression for the fracture 

surface energy (üilman, 1959); 

Yf 
cohesive 
Tyield 

Ye 

Here' Tcoh is the cohesive shear stress required to 

permanently shear the perfect structure, ry is the shear stress 

needed for rapid plastic flow; and Ye is the "elastic" surface 

energy.  In a vacuum Ye equals the intrinsic surface energy 

of the solid but it can be modified by surface adsorption in 

a gaseous or liquid environment.  The yield stress, T , might 

also be influenced by the environment.  Since (1/y Lltiplies, 

Ye, the effect of an environment on y{  cannot be uniquely 

related to either individual factor without an independent 

microscopic measurement.  If Ye becomes small, it does not 

matter if xcohAy is large because y    will be small and the 

-186- 



1 
matt-Tial brittl«*.  On th« otner hand. If f • *coh>   then 

1* * 1    and the material tecomca elastic and, hence, brittle. 

III.    Glide v«. Cleavage at a Crack Tip 

An environment cannot suppress flow in a sizeable 

region around a crack tip because the interaction energy at a 

surface is not large enough to change the energy density 

within a sizeable volume of material.  Therefore, special modes 

of deformation must be the ones that are suppressed.  The 

obvious mode for attention is the flow that emerges from a 

crack tip.  This mode has been observed experimentally (Oilman, 

1957), and studied extensively by Burns and Webb (1970).  It 

is the most important mode because it has the most effect on 

the sharpness of a crack tipi and, therefore, on its local 

stress distribution. This is clarified by means of Figure 1, 

which shows the configuration near the tip of a critical crack 

in a simple cubic structure (Goodier, 1968). 

A critical crack is on« for which the Griffith 

propagation condition is Just satisifsd.  The tip configuration 

is then nearly independent of the crack length because the 

maximum stress at the tip must always equal the cohesive stress 

(Keer, 1964).  Thus, approximately the same set of strains is 

always present and, hence, the same shape.  Plastic shears are 

effective in blunting such a crack only if they pass within 

one or two atom distances of the tip, as shown in Figure 2. 

In this figure, a shear at the very tip (A) has changed the 
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tip shape markedly, but a shear somewhat away from the tip (B) 

has changed the shape relatively little.  Thus small chanqss 

in plasticity very near a creek tip can markedly influence 

the subsequent bchavicr, but general plastic flow in thr 

vicinity may have little effect. 

The critical competition that takes place during 

cracking in general and during stress-corrosion cracking in 

particular is between the tendency for a crack to become longer 

by cleavage and its tendency to become blunted by plastic 

shears.  This problem was first considered explicitly by 

Kitajima (1965) and later by Kelly, Tyson and Cottrell (1967). 

Recently, Rice and Thomson (1971) have considered it in som«? 

detail.  It will be considered here from a different viewpoint 

that allows the essential result to be expressed in terms of 

relative surface energies.  This form of the result is 

particularly compact and can be readily applied to stress- 

corrosion problems. 

Because of the small scales of the crucial events 

at a crack tip, a detailed analysis of the physical processes 

that occur is very complex, but simple models serve to define 

the relationships between the principal physical features. 

Figure 3 shows schematically how dislocations can be used 

for this purpose. 

First, a crack can be modeled by means of an array 

of edge dislocations (Friedel, 1959) because the summation 

stress field of an appropriate array is closely similar to 
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1 
thÄt of • cr*ck.     In Figur« 3A a crack that is modeled in 

taras of dislocation« is shown.  Figures 3B and 3C focus 

attention on the region near the very tip of a crack. 

Now the competitive processes can be clearly defined. 

First, the elementary cleavage process consists of an advance 

of the leading crack-type dislocation, (Figure 3B) by an atomic 

distance in the x-direction.  Second, the start of plastic 

blunting consists of the creation of two glide dislocations, 

(1) and (2) which move out to a distance, x, from the crack 

tip. 

The first process requires an energy per unit length 

of approximately 2Ycb» where YC i« the specific surface energy 

of the cleavage plane, b is an interatomic distance, and two 

is the number of new surfaces. 

An estimate of the energy of the other process is 

somewhat more complex.  However, it is greatly simplified by 

the fact that the stress field of one of the two dislocations 

does not exert a force on the other dislocation if the medium 

is Isotropie and the dislocations lie on planes inclined at 

45* with respect to the cleavage plane.  Also, their interaction 

energy is constant (independent of x), and the sum of their 

self-energies equals the energy of the leading crack-type 

dislocation.  Furthermore, their stress fields approximately 

cancel the stresses on the crack surfaces so the image forces 

that tend to pull them back into the crack are small. 

When the dislocations are created two small surface 
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Steps of specific energy, yf, appear at the tip of the crack 

as indicated in Figure 3C.  These exert a tension, (+2Yg) 

to inhibit the creation of the dislocations for small x.  A 

driving force, (-2ib) tends to push the dislocations into 

the medium, where the stress, T decreases with x as follows: 

T(X) = T0 

»5 
(1) 

i b > Y  (for glide) (4) 

For cleavage to occur the local tensile stress must be equal 

to or greater than the cohesive stress, ocoh which is 

approximately: 

Since the interaction force is zero, the total force equilibrium 

U 
2Yg - 2.ob3/V^ 0 (2) 

and solving for x yields: 

x . b! -Ü (3) lr9J | 
This means that the dislocations tend to move further into the 

material as the applied stress increases or the surface energy 

of the glide plane decreases. 

The conclusion at this point is that (for a critical 

crack) both cleavage and glide may be spontaneous processes 

depending on the conditions very near a crack tip. 

For significant spontaneous glide to occur, x must be 

equal to or greater than b so that: 
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".oh - -r (5' 

Then since o  < 2r  the condition for the cleavage mode to oo ■ 
predominate is: 

yc < y9 <*> 

This condition is approximate so the main conclusion 

is that the mode of propagation of a crack is very sensitive 

to the ratio: (Ya/Ye) and anything that tends to raise y 

relative to YC will favor cleavage.  It is consistent with 

the behavior of layered crystals for which the ratio of 

Y to YC tends to be large. 

IV.    The Role of Surface Layers 

The application of this result to stress corrosion 

requires a recognition of the fact that very thin layers of 

material can substantially change the ratio of the energy of 

formation of a glide surface steps to the energy of a cleavage 

surfacn, and thereby enhance cleavage.  This Is illustrated In 

Figure 4A which shows how the formation of a thin surface 

compound (chemlsorption) can Increase the energy needed to 

make a surface step; It can also markedly Increase the 

activation energy. 

The presence of the surface compound is indicated 

schematically by the cross-hatched circles.  Initially (the 

dotted lines) each equivalent surface position is occupied 

by a second atomic species. After the shear, the positions 
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are indicated by the solid lines and it may be seen that the 

configuration around the cross-hatched atom at the center of 

the tip has changed considerably.  Thus, the surface compound 

has essentially been decomposed which requires an enorgy 

approximately equal to its free energy of formation, AF.  In 

order for a dislocation to form at this site spontaneously 

then, the work done during shearing must approximately equal 

AF per molecule.  That is: 

TbJ   AF (7) 

and since \   ■ G/15 at the tip of a critical crack, if AF is 

greater than about GbVlS spontaneous blunting cannot occur. 

Taking typical values of lO12 d/cm2 and 2.5 - 10"8 cm for 

G and b, respectively, this means that spontaneous blunting 

is not expected if A*1 exceeds about 0.6 e.v. or 15 Kcal/mol. 

The activation energy for this event may be equal 

to or even greater than the total energy change because the 

surface symmetry is destroyed when the glide displacement is 

b/2 so half the final shear has occurred and atoms have been 

moved to "wrong" positions. 

In addition to suppressing plastic flow of the 

critical blunting type, chemisorption lowers the effective 

cleavage surface energy and thereby tends to enhance cleavage. 

The change in surface energy is approximately AF/b2 and if 

this equals or exceeds YC» then spontaneous cleavage is 

oxpoctod provided the chemisorption species can continue to 
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reach tho crack tip. 

Another way to discuss this Is to consider the effects 

on Equation (6).  The chemisorption energy per unit surface is 

~AF/b2 which enhances cleavage so it subtracts from y   ; and 

adds to Y since it tends to suppress glide.  Thus the cleavage 

condition becomes: 

or cleavage is expected if: 

AF > (YC - Yg)b
2/2 (9) 

Suppose that (y    - y  )  ■ 103 ergs/cm2 and again b ■ 2.5xl0"8 cm. 
w y 

Then cleavage will occur for AF « 0,2 e.v. or "5 Kcal/mol.  Even 

the physical adsorption of a highly polarizable species such as 

water can cause this much energy change. 

Figure 4B illustrates schematically how local shearing 

affects the configuration when a localized surface dipole layer 

is present; or a species that adsorbs external to the substrate 

surface. When shearing occurs, the local configuration must 

again change substantially.  In this case whether or not its 

energy of formation must be provided depends on how strongly 

the adsorbed atoms interact laterally.  If this interaction is 

weak there may be little effect. 

-193- 



V.      Example of Hydrogen Dnbrittleawnt 

The bond energies of the gaseous hydrides arc shown 

for a majority of the elements in Figure 5.  These numbers 

indicate that atomic hydrogen interacts strongly with most 

elements (and, hence« with most alloys).  In fact, the inter- 

action energies are typically large compared with the surfacr 

energies (per atom) of the elements.  Therefore, it can ' - 

expected that if hydrogen can reach a crack tip in nearly any 

element (or alloy) i  will tend to cause embrittlement. 

The interaction with hydrogen is strongest for elements 

with low atomic numbers and large electronegativities but it 

is substantial for most of the elements except the rare gases. 

Since those bond energies are comparable with the heats of 

chemisorption, these are also high for most elements.  The 

widespread existence of hydrogen embrittlement of metals is 

therefore not surprising but the detailed mechanisms continue 

to need elucidation. 

One of the first problems to be considered is the 

hydrogen-surface interaction because the interaction of a 

metal with hydrogen depends strongly on the state of the metal. 

The data given in Figure 6 show this jaite clearly for a few 

illustrative metals.  Metals bond most stiongly with hydrogen 

in diatomic molecules and least strongly with hydrogen in 

diatomic molecules and least strongly as stoichiometric solid 

hydrides.  At tree surfaces the strength of bonding is inter- 
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I! mediate.  Thi« suggests that the interaction of a metal with 

hydrogen depends strongly on the distance between metal atoms 

as illustrated in Figure 7.  Strain of a metal surface can 

therefore be expected to strongly affect the chemisorption of 

hydrogen; especially the large strains found near the tips of 

cracks. 

If repulsion effects determine the interactiors energy 

then it is reasonable to approximate the curve of Figure 7 by: 

^ - E£ (i-e-^-ds/Mj . EJ (10) 

where d is the metal-metal distance, ET is the interaction 

energy for full separation (dilute gas), E? is the interaction 

energy in the solid hydride, d is the metal-metal distance in 

the solid hydride, and 6 is a constant.  The initial slope is: 

(-ra) mn      I(d-d.) M 6 (11) 

Sines E. ani :  art oftsn known from thermodynamic data, if 

the initial slops can bs estimated this allows an estimate 

to be made of the binding energy of hydrogen at appropriate 

points nssr ths tip of a crack. 

Because of ths strong intsractions of hydrogsn with 

free atoms and surfscss it can bs sxpsctsd to chsmisorb at 

all available sitss nsarby a crack tip in most mstals.  Both 

glids suppression and clssvags enhancement may occur.  Either 

will result in embrittlement of ths metal. 
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VI.    Summary 

The importance of events within the atomic atructuro 

at the tip of a critical crack in an elastic-plastic solid 

is emphasized-  Changes in the surface environment can chany 

i  je energy needed to create a dislocation and the energy 

needed for cleavage.  Such changes can shift the delicate- 

balance between the tendencies toward glide and cleavage 

initiation at a crack tip.  Inhibition of plastic deformation 

increases the tendency for cleavage, and numerical estimates 

of this effect are given which show that relatively small 

adsorption energies can have marked effects.  The case of 

hydrogen adsorption is emphasized and it is concluded that 

since hydrogen interacts strongly with most elements it can 

readily cause embrittlement. 
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FIGURE 1 

Configuration near tip of a crack in a simple 
cubic crystal. 
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FIGURE 2 

Schematic effect« of plastic shears on th« con- 
figuration near the tip of a critical crack. 
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Array of crack dislocations representing crack 

Advance of crack by cleavage. 
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I 

Blunting of crack tip by plastic shears 

FIGURE 3 

Dislocation models of crack tip processes .1 
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Ni Pd To 

DIATOMIC   6ASEOU8 
HYDRIDE -60 -60 -83 

CHEMISORPED 
SURFACE   LAYER -30 -26 -45 

SOLID   HYDRIDE + 6.0* -2.7 -9.5 

FREE   ENERGY    AT   R.T. - THE   ENTHALPY 
IS   NEGATIVE 

FIGURE  6 

Effect of the state of typical metals on their 
interaction energies (enthalpies) with atomic 
hydrogen (kcal/mol). 
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FIGURE 7 

Effect of the distance between metal atoms on 
their interaction with atomic hydrogen (schematic). 
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A UNIFIED THEORY FOR THE FREE ENERGY 

OF INHOMOGENEOUS SYSTEMS 

L. A. Swanger 
G. M. Pound 
J. P. Hlrth 

Abstract 

Recent theories for the free energy of inhomogeneous 

systems are considered and shown to be consistent when certain 

apparent discrepancies In coordinate systems are removed. The 

question of reduction of symmetry of a crystal to that of the 

group C  In the presence of a field gradient Is discussed. 

Conditions for the existence of odd-order gradient terms In a 

free energy expression are presented. 
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A UNIFIED THEORY FOR THE FREE ENERGY 

OF INMOMOGENEOUS SYSTEMS 

L. A. Swanger 
G. M. Pound 
J. P. Hirth 

Introduction 

The free energy of non-uniform systems has been ex- 

pressed in terms of thermodynamic variablos and their gradients 

by Landau and Lifshitz1 and has been applied in detail to the 

case of concentration in binary solutions by Cahn and Hilliard^. 

The latter treatment is valid for the case of cubic or Isotropie 

materials with a concentration gradient that is small compared 

to the reciprocal of the intermolecular distance.  Their result. 

for the free energy density at a point 

f - f + K(Vc)? + ... (1) 

contains only even powers of the oven concuntration gradients. 

Combining this result with an expression for the strain energy 

of a two phase medium, Cahn2 derived the modern description 

of the early stages of spinodal decompos tion in the defect- 

free material. 

An extension to the above» theory was presented by 

Tiller, Pound, and Hirth (TPH)3 and Hirth, Tiller, and Pound 

(HTP)".  Their conclusion was that, in cases outside the rather 

restrictive assumptions of Cahn and Hilliard, there is no reason 
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t. .„.iud. the depenae„c. ot tr rgy on ^ ^ ^ 

order, of concentration gedient., .p,cifl0.lly u,? rlr.t 
-«imiv. which a also reforred to M ^ unoar ^ 

indeed, the pre.ence of .uch odd order t„rm. „ro,,,.^ 
y POl"i"ti°- "« "»en .nown for .ome tima U crv».,, 

Physics under the cste9ory of m^,  effects. 

A subsequent paper by TPH« re-emphasized the origins! 
contribution of these authors. Ska* ,:nor" that • "noentration gradient 
wiU, in generai, i„du0e gra(älent. ln other thermodynainlc 

•ntities via reiaxationai acco™,odations.  Such additionai 

.radiants couid, i„ a ph.no^onoiogioai description, be assigned 
as properties of the matarl.i .-J ^u 

ne material and thua oauae linear terms to 
occur in an exprossion for the «... 
,.  ,, the free ener9S' 1» terms of concen- 
tration and its gradients. 

| j «ecently „orris' has combined the above contr.bution 

from TPH. with a statement from „TPV There the authors 

11       -ated that in general the total spatial derivative of energy 

I! 

The first term Just tabulates the depend.nce of energy on 

I j       concentration but the second term admits the poasibility of 

sn intrinsic directionality in the material, „orri. i„cor- 

(1       Ported this concept by demonstr.ting that a material with 

,(       syaunetry derivable from the group c^, „hich i. the case for 

the material properties discussed by TPHS •, will lndead „„, 

'I 

«■(iijdfMiij 
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f - f (c^VcV'cV'c,...) (3) 

.1 

directed axis and will include in a free oncrqy expression a 

term that is linear in concentration gradient. 

The former concept of induced fields was included by 

Morris in a set of parameters « which are arguments of an 

energy-density functional.  By including the set of parameters 

in a description of a reference state to ono derivable from 

c«v-  
By "sing | to describe the induced fluids identified by 

TPIl', such reduction of material symmetry is acctmplished. 

Mathematical Models 

By adopting a  particular mathematical viewpoint, the 

concepts of the various contributors to this topic can bo 

analyzed, organized and compared. 

First consider an idealised class of binar,  aterials 

that deviate from complete thermodynamic homogeniet> only by 

variations in concentration.  Here external fields, Induced 

fields, and defect fields are excluded, Inavmg only concen- 

tration fields.  For such materials the logical choice of 

reference state is one of uniform composition.  The concen- 

tration is constant and equals the average value in the actual 

state.  Then the free energy density at a point is expressible 

as a function of the independent variables concentration, first 

gradient of concentration, second gradient of concentration, 

etc. 
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I 
**        For such a system a set of "partial response curves" can be 

u defined.  These curves describe the dependence of the free 

energy density on each of the independent variables, with the 

other variables held constant at their reference state values. 

Figure 1 shows how these curves might look for a binary solution. 

Such curves arc conceptually available either experimentally« 

by making measurements varying one parameter at a time, or by 

calculation assuming exact expressions for all interactions 

arc available. 

Figure 1 shows the various curves for a one dimensional 

crystal in laboratory coordinates, the basis for the following 

examples.  The various imbedded coordinates and generalized 

three-dimensional cases are discussed in a later section. 

Now consider the partial response curves for a cubic 

or Isotropie medium, Fig. 2.  Particularly note that the curve 

for dc/dx ■ 0. This is because, being Isotropie, the material 

responds identically to a concentration gradient of given 

magnitude, independent of the direction of the gradient. Thus, 

f  is an even function of Jc/Jx and as such can be expressed as 

a sum of a set of even orthogonal functions.  A suitable set is 

the sequence of even powers.  The method for determining the 

coefficients of each term is by Taylor's theorem: 

. 

Q 

7x=3   ** 
ic        -  2 »(**) 

7x=7 3X 3c 
7x=7 
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In this equation 3f2
n/3n(|f) - 0, n - 1,3,5,...  This is the 

origin of the statement by CH1 that odd powers of the concen- 

tration gradient do not contribute to the free energy.  This 

case may include the effects of induced gradients if the species 

of the induced concentration profile, e.g. vacancies in a crystal, 

are everywhere at equilibrium with the material.  In this sit- 

uation, partial response curves like those in Figure 2 would of 

course apply.  Whenever this condition is not met, the state to 

be described is inaccessible by the usual Taylor expansion about 

3c/9x ■ 0, linear and higher odd-order forms do arise and the 

required phenomenological expression must be regarded as em- 

pirical.  This important class of cases will be discussed later 

in the present section. 

The partial response curve f3  is in general not symmetric 

about 32c/3x2 ■ 0, even for an Isotropie material.  Thus, an 

expression for this quantity in terms of a power series will 

include terms of all powers, even and odd.  Cahn and Hillard's1 

coefficient Kl   is just the slope of fj at 92c/8x2 « 0. 

The partial response curves given in Fig. 3, still in 

laboratory coordinates, can arise in two ways: (i) the material 

itself is of a symmetry derived from C  , or (ii) a more 

symmetrical cry .tal has had its symmetry reduced by inclusion 

of an external gradient in the system of the reference state. 

Because it is no longer symmetric about '<)c/'6x  « 0, f now 

needs to be expressed as a power series containing terms of 

all orders, with coefficients calculated using Taylor'.s theorem. 
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Expre.slont of thig type were preeented by Morri■•. 

Let ua next consider the very important claaa of cases 

which arise when the species of the induced concentration 

profile, e.g., vacancies and/or dislocations in a crystal, are 

not at equilibrium with the materiel.  A prime example of this 

situation occurs in spinodal decomposition of solids where 

vacancies are being pumped by high gradients in the regions of 

short half wave length (MOC A) between extrema which differ 

greatly in composition.  It is clear that such states are n- 

accessible by the usual Taylor expansion about the normal state 

of uniform composition of the type given by Eq. (4).  Instead 

of expanding about 3c/3x - 0, the expansion or f2, if meaningful 

must be about a value of 3c/3x for which the non-equilibrium 

effects become appreciable.  Such a situation is depicted in 

Fig. 4 for both imbedded (Lagrangien) and the usual laboratory 

(Eulerian) coordinates.  The former are preferred, because it 

adds nothing to consider the reverse direction of an external 

coordinate when describing the effect of an internal field. 

Note that curves such as that for 3c/3x in Pig. 3 are impossible 

to obtain in the induced field case. The reason that the usual 

Taylor expansion about 3c/3x - 0 is not valid for the outer 

branches of the curves in Pig. 4 is the singularity at (i) 

where the differential coefficient of 3c/3x is discontinuous 

(in the present example) and the differential coefficient of 

32c/3x2 is non-existent.  In simpler terms, the two positions 

of each of the curves in Pig. 4 are represented by different 
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function«.  The function for the outer branch is different 

from the inner branch.  The inner branch represents the situ- 

ation where the induced concentration profiles arc in equi- 

librium with the matrix.  The outer branch is the sum of the 

function for the inner branch and another function which ex- 

presses the effect of the induced non-equilibrium concentration 

profile.  One notes that this effect becomes appreciable only 

above some value (i) of the imposed gradient, which corresponds 

to the "critical" gradient for which the crystal symmetry is 

reduced by the induced field to the C  group.  The second 

term of Eq. (2. is now appreciable: with such effects, there 

must be linear and higher order odd terms in the expression 

representing the free energy density in spinodal decomposition 

and other important ca.*es, although their magnitudes have not 

yet been estimated.  As pointed out by TPH1 and HTP1', the 

required expansion must be regarded as empirical. 

A specific mathematical form corresponding to Fig. 4 

would be the Heavside function discussed by TPli and associated 

with dislocation formation.  With effects of this type assoc- 

iated with vacancies, electron polarization and the like, the 

effect can in principle occur for very small gradients.  On 

the scale of experimental observation, the slope discontinuity 

could be effectively at the origin as shown in Fig. 5.  This 

case whore df/ö {dc/dx)   * 0 as dc/*x  -► 0 is the specific case 

leading to concentration faceting treated by HTP", CHS, and 

TPIl'.  In fact, the case of excess vacancy formation caused 
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by diffusion in a region of crystal which is free of dis- 

locations or other vacancy sources is a good example of Pig. 5. 

In the absence of sources and sinks at quasi-steady state there 

can be no divergence of the vacancy flux which will thus be 

determined by boundary conditions removed from the region in 

question: hence, the local vacancy concentration will differ 

from both local equilibrium value and the value in the presence 

of a gradient but with local vacancy sources and sinks.  From 

the viewpoint of diffusion theory, diffusivities for processes 

such as the early stages of spinodal decomposition or Nabarro- 

Herring creep, where no local vacancy sources are anticipated, 

should differ. 

The calculation from first principles of the various 

coefficients in the free energy expression given above is not 

very illuminating. As pointed out by HTP\ and clarified above, 

determination of the coefficients is a process of parametric 

curve fitting, and does not involve a one-to-one correspondence 

between physical effects and coefficients. 

All the above has been consistent with Morris'' 

assumption of the existence of a functional P that relates f 

to concentration and its gradients, temperature, and the set 

of thermodynamic parameters ♦, which is continuous to all 

orders.  It is only with the existence of this continuity that 

a Taylor's expansion about 3c/3x - 0 to determine a power series 

representation for f is meaningful.  By going outside that 

assumption, the topic of singularities becomes accessible. 

-213- 



HTP1* wrote their free energy function as a phenomenological 

expression rather than an analytic expansion in order to in- 

clude situations outside the domain of the description of CH 

and Morris. 

The present formulation can also be used to invostigato 

the claim of HTP" that two different coefficients are needed 

for 32c/3x2, depending on the sign of the curvature (Eq. 5 in 

HTP1*).  If fj is an analytic function of d'e/dx*,   then such 

dual coefficients are meaningless.  The curves for f  in Figs. 

I, 2,   and 3 are all expressable as 

t,  -  K, 0] **>{&]   ♦«.[&]   ♦- !•) 

K, is just the slope of f, at a2c/ax2 ■ 0.  On the other hand, if 

it is desired to express the effect of 32c/bx2 phenomenologically# 

as done by HTP1* in their Eq. (5), then two different coefficients 

are needed for 32c/Öx2.  Further, these coefficients are a 

function of x. 

The discussion on this point is in HTP14 at the botton of 

their page 122, and the supporting diagram, their Fig. 2b. 

Then, given the two composition profiles of HTP1* Fig. 2a, indi- 

cated by their curvature on Fig. 7, the free energy curves of 

their Fig. 2b should be separated by an amount ^(lil^f.fA) at 

x0.  Furthermore, under the assumption that 

»■(H]{isM*y    •"»»>. 
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the solid line of their Fig. 2b wuid be replaced by those 

shown in Fig. 8. 

From the above viewpoint, it can be seen that Cahn and 

Milliard treated only high symmetry systems, without external 

fields or such induced internal fields as non-equilibrium 

vacancy gradients and describable by Morris' functional (i.e., 

no singularities).  Working within the limits of his functional 

Morris extended the work of CH to include low syronotry cases, 

non-equilibrated internal fields, and external fields, all of 

which require terms linear in composition gradient to describe 

their free energy density.  However, Morris* work was pre- 

coded by the concepts of HTP* and TPH,'•.  Not only did the 

latter authors anticipate Morris» careful treatment of the 

continuum model, but they also recognized ehe role that singu- 

larities could play. 

Since there has been considerable discussion of 

coordinates1'^ some comment on the extension of the above 

discussion to three dimensions is in order» a two dimensional 

case suffices to indicate the three dimensional case.  Fig. 9 

shows x,y imbedded coordinates, x'^' laboratory coordinates 

with x", y" crystal symmetry coordinates.  HTP" treated the 

cese where x,y and x",y" coincided, « - 0.  Hence, the scalar 

nature of the free energy (invariance to coordinate trans- 

fo.mation) is automatically satisfied in their work, contrary 

to the assertion of Morris* which arose because of a mis- 

understanding of the above choice.  Moreover, HTP* Eq. (2) is 
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is correct, again contrary to Morris' assertion, and corresponds 

exactly to Morris" Eq. (10).  CM1 purported to show t-hat HTP" 

Eq. (2) violated symmutiy requlreinents but they assumed that 

the equation was written in l.iboratory coordinate x'^y'.  In 

x^y* coordinates, the free energy iruat. be invariant to rotation 

A0f then, of course, the form of HTP" Eq. 2 would not hold.  For 

example, the linear term would have to be cast in the invariant 

form a|Vc| as indicated by CH*.  Also, more meaningful from the 

crystal physics viewpoint, the free energy must be invariant 

to rotation A6 as noted by Morris'.  Again, the form HTP* Eq. (2) 

would have to be recast for the case 6^0, and the linear term 

would become a|Vc| as noted by Morris1*. 

Hence, Eq. (2) of HTP" is correct and certainly applies 

to the various one-dimensional applications1''*.  Morris*' 

formulation better reflects the crystal symmetry influence and 

is more useful in three-dimensional cases.  However, physical 

cases where this model applies correspond directly to those 

predicted for the simpler geometry discussed by HTP1*. 

Kinetic Effects 

As mentioned in the Introduction, HTP" suspected and 

CH5 demonstrated that singularities deecribable by •|le/9x| 

will result in concentration facets during diffusional processes. 

One way to illustrate this result is by considering the volume 

integral of the free energy density of a fluctuated system. 

Considering jus< ehe contribution from the a|3c/3x| term: 
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rt - I   •, ax dx a. I dc 

X 
«o.^-ci 

-I "1 

To make physical sense, this integral must be performed piece- 

wise between local extrema. The only variations that lower 

F are those that reduce the deviation of local extrema.  So 

the only diffusive driving force is at the extrema, where 

3c/3x ■ 0, thvs flat concentration facets are produced. 

The technique can be applied to assess the consequences 

of singularities in 32c/ax2. If the dual-coefficient statement 

of HTP" is combined to yield a term in |32c/Dx2|: 

s»L 3 ♦ K. r32c 
-  X 

32c + (K,+K2) 
f92cl K, > 0 

K2 < 0 

then an integration of that portion may be performed. 
/ 

|32c 
■5xT dx 

3c 
1*1 

3c 
7x1 

Ü 

. 

Ö 

0 

Again, this integration must be performed piecewise between 

local extrema in 3c/3x (where the second derivative is zero), 

and the result would be faceted concentration gradient profiles. 

Faceted gradient profiles can also arise from linear gradient 

dependence of the diffusivity or mobility as discussed by TPH". 

For the case of a linear term of the type a • 3c/3x, 

another case considered by Morris', integration need not be 

piecewise since negative contributions would cancel positive 

ones.  Consider Fig. 10 with five local extrema shown. 
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dc - a0 CL-0« 

shows that the only diffusive driving force is at the boundaries 

of the specimen.  Thus, there is no internal faceting predicted 

for this type of linear term. 

Time Dependent Linear Gradient Terms 

Another interesting topic is the transient effect of 

induced fields.  Let us consider the example of transient non- 

equilibrium vacancy gradients.  It is known that in systems 

that exhibit a Kirkendall effect, net transport of atoms in 

one direction is accompanied by transport of vacancies in the 

opposite direction.  In processes such as spinodal decomposition, 

during which no steady-state is reached for some considerable 

time, the vacancy profiler, left behind by previous concentration 

profiles will provide a time-dependent reference state, or a 

history effect.  Computer simulations of spinodal decomposition 

by Swanger, Cooper and Gupta10 and Gupta and Cooper" have 

shown that as time progresses, the concentration gradients at 
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The high energy gradient from A to 2 just cancels the low 

energy gradient from 2 to 3.  The energy of this region ib 

independent of c2, so there is no driving force for diffusion. 

Integrating over the whole sample: 
I 
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. . 

a point can actually change sign (direction). Thus, concen- 

tration gradients can temporarily interact with vacancy 

gradients, opposing those they would induce themselves at 

steady state. 

The vacancy gradient could be treated as a time- 

dependent member of Morris' set ♦', and thus yield a term 

a • 3c/3x in the free energy expression.  As shown above, 

this would not normally produce any diffusive driving force. 

However, the unique character of the vector o describing the 

vacancy gradient is that its direction is position dependent 

within the material.  In Pig. 11 a vacancy profile and partial 

response curves for three different regions are shown.  Possible 

concurrent concentration profiles to be imposed on the material 

are shown in Pig. 12, along with the resulting free energy 

densities. Considering the variations in concentration that 

would lower the integral free energy, one would expect profile 

I to facet at the top, profile II to cusp at the bottom, and 

profile III to shift to the left and steepen on its right side. 

These tendencies are shown as dotted lines.  These are transient I 

u 
a 

effects, operative only as long as the vacancy profile is intact. 

Conclusions 

By adopting a general viewpoint it is possible to 

reconcile the various postulates made about the free energy of 

homogeneous solutions, as well as to deduce further aspects of 

their nature.  It is hoped that by making the nature of the 
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expansions and empirical series describing free energy density 

in terms of concentration and its gradients quite explicit, the 

contributions of all the workers in this field can be appreci- 

ated. 
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Figure 1.  Partial retpons« curves for an arbitrary binary 
solution. 
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Figu e 2.  .»«rtlal rcspont« curve« for an Isotropie material 
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Figure 3.  Partial response curves for a solid with symmetry 
coov' or a sy8tein including directed external fields. 
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Figure 4.  Partial reapona« curvat for induced internal fields. 
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Figure 5.  Plot of free energy density versus gradient for 

induced non-equilibrium vacancy concentration 
profiles. 
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Figure 7.  General analytic partial response curve for 6*0/%**, 
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Figure 9. Various coordinates for a crystal; x# y are imbedded, 
x , y' are laboratory aid x", y" are crystal syronotn 
axes, reapectivoly. 

symmotry 
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Figure 10.  Complete profile for illustration of effect of 

a7x ' 
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Figure  11.     a.     Vacancy profile 
b.     Partial response curves 
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TIII<;«,RY OK KIN IC TUANMPOHT 

IN t'KYHTAM.nilHAI'IIIC TUNNI-J.H 

W. II. Ilyvirtit. MIMI I.  A. Ihi.MlInn 

A ll^n,.t| I,.«) „MHU,| |,rtN Um*u ,\HS,mlnpmi   im   (Im treat- 

mont of tlu. muiinn „f ,,.„« M,,.,„.„, ,., yN» «||,n„ .phic lurm.la, 

.iH atn   foun.1 In nmimUlH Hmt *,* InUM^Ntlng «olid electro- 

lytea.  Thli modi.1, which iiuthi<1«g ,ummi6mr*{ inn  of both point 

charge and hlyhor ordfr at it artlv. tarma aa wall aa overlap 

repulaion effect., allow, the calculation of the minimum energy 

poaitiom of mobile iona and the activation energy barrier that 

they muat aurmount to move through the lattice.  Calculationa 

have been made for iona of different aizes in the Agl lattice 

which ahow the experimentally obaerved dependence of mobility 

on ionic aize, and initial steps have been taken toward ex- 

tenaiona to more complicated atructurea. 
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THEORY OF IONIC TRANSPORT 

IN CRYSTALLOGRAPHIC TUNNELS 

W. H. Flygare and R. A. Huggins 

Introduction 

Experiments have shown that unusually large values 

of diffusion coefficient and ionic conductivity are found in 

several groups of materials which have crystal structures 

that are characterized by the existence of linear or nearly 

linear tunnels.  Under proper conditions certain ions (e.g., 

the alkali ions) can readily move along such tunnels under the 

influence of chemical or electrical foroei.  The magnitude 

of the resulting transport fluxes in some electronic insulators 

make them particularly interesting beasus« of Mmlr potential 

use as solid electrolytes in new l;ypeM »r \m\\»rlmn  or fuel 

cells. 

One of the interim lm| «^,,«,1.. ..I Hi* «v« I 1*1.1* data 

is that there appears to  be an n|,i IIIMIIII .;MN hu Hi* |on trans- 

lating through the tunneJ.  tuna Mlgnl I h.ruii jy .„laUer than the 

transverse dimensions of the tunnel, «a will a« .....rl. Janj.r ions 

both appear to have lower value* of mobil Ity than Ions of Inter- 

mediate size. 

The Model and Calculations 

The purpose of this paper is to examine a model to 

calculate the energy (as a function of position) of a mobile 
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ion In a crystal lattice. This model may allow a calculation 

of the minimum energy position for the mobile ion as well as 

the activation energy or energy barrier between minimum 

positions. 

The general approach will be to examine increasingly 

complex crystal lattices in the following order: 

1. Agl, Ag  ion motion 

2. TiOa, Alkali ions (Li"*", Na*, K*, Rb*, and Cs4) 

in motion 

3. 0-alumina, Na AIMOI?, Na ions in motion 

The energy of an ion in a lattice is described by a 

sum of electrostatic and overlap repulsion terms. The electro- 

static term includes the sum over point charge interactions 

(Mandelung sum) and the higher order terms which include the 

point charge-induced dipole, point charge-induced quadrupole, 

dipole-dipole (point charge induced), and dipole-dipole (dis- 

persion) terms.  The general summations used in alkali halide 

lattices have been examined by Quigley and Das1 to show that 

the Li* substitutional impurity in KC1 has an energy minimum 

off-center along both the <111> and <100> axes. The 

activation energy for diffusion of interstitial lithium, 

copper, and silver impurities in the diamond lattice has also 

been evaluated by Weiser2.  Both of the these calculations 

used techniques developed by others1. 

In the present work we will use the following electro- 
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•t^tlc •n.rgy for th. 3th point charge ion in a lattice: 

The .u» over j U over all lattice ion., ^ and q.   are the 

fraction, of charge of th. mobile ion and fixed lattice^charge. 

reapectively, ^ i. the dipole polariaability of the ith fixed 

lattic. mm  «nd i^ Ü the di.tance fr«n the mobile ion to the 

jth lattice ion. We are aa.uming that th. polari«ability of 

the mobile ion i. much 1... than th. ion. in th. ho.t lattic. 

Th. ..cond t.rm in Eq. (1) i« th. polari.ation .elf- 

energy of a non-polari.able mobile ion in th. lattic. of fixed 

charge..  Th. ori.rtational dipol.-dipol. term., 

urwt   3(M»*r ia) (Ui'r 1 J) 

S ■ :n^iT,"         «fTJ1 

ar. n.glected.  These term. ar. normally .mall.r (u - Ea, 

E - «l /r') than th. corresponding .calar ..If-.nergie. by a 

factor of l/r1 for the dominant n.ar-n.ighbor terms.  In any 

.v.nt, th. ori.ntational .n.rgy in Eq. (2) will not be included 

in thi. calculation. This approximation is consistent with 

the method used by Weiser'.  The overlap repulsion term between 

closed-shell ions is given by*1 

top 17 • ' 

.1 
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where ri and Z2  are the ionic radii of ions one and two, riz 

is the interionic radii, and B^ is a multiplicative factor 

depending on the nature of the interacting ions5.  The 

parameters used in the repulsive term in Eq. (3) and the 

polarization term in Eq. (2) are given in Table I.  The final 

energy of the it mobile ion is 

2 v h2l      e2 r Vi , r . ^3 (ri+r2-r 12)      (4) E = e2 ) --—L - f- i r-1—ir + I  Biie {q} 

D  rji  2  j rji   J  ^ 

Eq. (4) diverges as r. . •♦0 which is sometimes referred to 

as the "polarization catastrophy".  The energy will converge 

by making a. dependent on the interionic distance to lower 

a. as the ions approach each other or by converting the ex- 

ponential repulsive term to a IAJJ12 term when the ions are 

closer than the sum of ionic radii.  These refinements are 

easy to apply, but Quigley and Das2 have shown that the minimum 

positions for the substitutional Li+ impurity in KC1 were 

predicted with Eq. (4).  Thus, we will use Eq. (4) directly 

without correcting for the polarization catastropy at small 

r...  Our analysis will be valid for ri+r2 < ri2. 

We will now attempt to apply this model to a number 

of crystal lattices. 

The Aql Structure 

Ag+ ions have unusually high mobilities and diffusion 

constants in the Agl lattice.  The crystal structure of Agl 

has been given by Streck6. A diagram of the Agl lattice is 
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given in Fig. l.  According to Streck  th« r* y o öcrock, the I xons are much 
larger than the Ag+ ions.  Thus, the T m^m     , 

HUH, cne i atoms dominate the 

cry«.! 8tructure, whic, U body-centered cubic in l".  T1,or(. 

«e several near-.quivalont position, for the «,* ions as 

indicated In tbo dla,ram. The iarge number o, en.r9etlcally 

high mobility. Apparently, tunneis of relatively constant 

potential energy occur throughout the lattice. 

The positions of the two types of i" ion8 ln the ^^ 
are (see Pig. 1)• 

Ri - ((x-la)' *   (y.Na)! t (J.M,,,,!, 

R. - ((x-a/2-ia)' ♦ (y-a/2-N.,' ♦ I^VWli,.,*    ^ 

The energy of an Ag* i0„ w„ oalculated „ , ^^  ^ ^ 

and . i„ the host f  lattice according to Eg. ,«. tha . „.^ 

in Eg. (5,, and the parameters in Tabie I.  t) N, and „ ^ ^ 

muitipuer, of the iattlce distance (•*.,„, aJong the , 

"d , exes.  A sampie calcuUtion „1th various values of x y 

the sum, the energy „in increase with Increasing size of the 

lattice which is included in the calculation („MAX, «„. and 

MMAX,.  However, the energy differences should converge with   ' 

rncreasing values of .MAX, IMAX, and MHAX.  NHAX . x^x . MMAX 

'  9 values „ere found large enough to achieve convergence 
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and shows definite minima in the energy at the followinc, values: 

—2 V        lz  - 2.517 - a/2] 

0.000 0.2517 

0.252 0.2517 

0.503 0.5034 

0.755 0.5034 

1.007 0.7551 

1.258 1.0068 

1.510 1.2585 

1.762 1.2585 

These minima positions correspond roughly with the @ positions 

shown in Fig. 1. 

A sequence of calculations was then performed as a 

function of RPLU (the cation size) with the following general 

conclusions. 

1. The energy at x-0# y-O, 2-2.5170 (positive ion lattice 

point) is lower for the light positive ions because of 

the smaller repulsive contribution (RPLU small). 

2. At y-0, z-2.5170, the AE along the x-axis increases with 

RPLU. 

3. A minimum was found in a location near the @ positions 

in Fig. 1 for positive ion (RPLU) values below 1.0 and a 

maximum was found near the ©position« for RPLU > 1.0. 

The crooa-over point where th«re are energy minimum paths 

of AE = 0 appears to be about RPLU - 1.1.  A diagram of 

the path of minimum energy in the z-2.5170 xy plane is 

shown in Fig. 2. 
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The TiOa Structure 

Several of the positive alkali ions (as impurities) 

have unusually high mobilities in TiOa.  The Tio? lattice is 

shown in Fig. 3.  There are four o" ions and two Ti*"*"*""*" ions 

in each unit cell and the coordinates of these 6 ions are 

(see Fig. 3 for numerical notation), 

cations 

R, - ((x-aI)2+(y-aN)2+(^-cm)2),, 

Ra - ((x-a/2-aI)2+(y-a/2-aN)2+(z-c/2-cm)2),s 

anions 

R, - ((x-u-aI)2+(y-u-aN)2+(z-cm)2),, (6) 

RH - ((x+u-aI)2+(y+u-aN)2+(z-cm)2),, 

Rs - ((x-u-a/2-aI)2+(y-a/2+u-aN)2+(z-c/2-cm)2),s 

R« - ((x^•u^■a/2-aI)2+(y+a/2-u-aN)2+(z+c/2-cm)2),, 

The energy of a number of positive ions in the tunnel region 

of this structure (Fig. 3) can be obtained as a function of 

x, y, and z as described previously for the Agl case.  These 

calculations are still underway, and the results will be pre- 

sented in a subsequent report. 

Discussion 

This model represents a new approach to the explanations 

of the unusually high values of ionic mobility found in certain 

types of solids.  Initial calculations using the Agl structure 

indicate that it successfully corresponds to the important ex- 

perimental observations.  Further work should be done to apply 
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this approach to other more complex structures and to investi- 

gate its application as a tool to aid the search for new solid 

electrolytes. 
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TABLE I.  Parameters used in Eqa. (2) and (3) 

ion £ 2 
Li + 

0.67 o 
Na* 1.0 0 

K+ 1.3 1.3 

Rb* 1.5 2.0 

e.4 
1.7 3.3 

F' 1.3 0.6 

Cl' 1.8 3.7 

Br" 2.0 4.8 

l" 2.2 6.4 
n*** 

0 

om 
2.4 

Al*^ 0 

B- 1.0 

Bt-. 1.0 

w
 

1
1

1
 1.0 

B^ 1.25 

B__ 0.75 

B 0.40 

Dti " ^^ 
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Figure 1.  The Agl lattice.  The 
small ions ruprese 
are 2 I  ions and 
positions. 

large ions arc I* and the 
positions.  rfjcr«« 
2 O, and 12(ö)Ag + 

nt Ag"'' ion p 
6 (§), 6#. ] 
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c «2.958 
u «0.3053 

• Cation in-plane 
• Cation c/2 out-of plane 
O Anion   in-plont 
• Anion c/2 out-of plane 

Figur« 2.  TlOt lattice showing two adjacent unit cell: 
with a tunnel between them. 
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Figure 3.  Path of minimum energy in the z ■ 2.5170 xy plane. 
jE is a minimum when R ■ 1.1. 

Z = 2.5170 

Path 
% 

Minimum 
AE 

R+= 1.1 
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EFFECT OF STRESS ON ELECTROCHEMICAL DISSOLUTION 

R. Corner 
R. Thomson 

Abstract 

Some simple thermodynamic considerations are applied 

to the dissolution of material from a surface under stress 

such as obtained at a crack tip. We estimate that the EMF 

generated at the crack tip in iron is of the order of four 

millivolts. 
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EFFECT OF STRESS ON ELECTROCHEMICAL DISSOLUTION 

R. Corner 
R. Thomson 

In view of the high stresses possible at the tip of 

cracks in stress corrosion, it seemed worthwhile to make an 

estimate of the change in (open circuit) oxidation potential 

of simple dissolution reactions of the type 

M * M+n + n e" (1) 

where n represents the oxidation state of the ion.  We con- 

sider for simplicity uniaxial stress only at this point, 

although the stresses at crack tips will generally be more 

complicated. 

Consider the change in Helmholtz free energy AF per 

gram-atom of metal M when a uniaxial stress az is applied in 

the z direction, as shown in Figure 1. 

77777 

Figure   1. 
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AF - V Jode - Vrtk,eV2 oj   Z 0   z 
(2) 

where k is Young's modulus and e ■ Az/z Is strain and V 
z 

the gram atomic volume at o » 0.  AF may be Interpreted as 

the work done on a gram atom of M when It is transferred 

reverslbly, say by vaporization, from a block of unstrained 

material, to a different block, and the latter then reverslbly 

strained.  Since F is a state function the same AF must result 

when this process is carried out (reverslbly) by means of an 

electrochemical cell, consisting of two blocks of M, strained 

and unstrained, immersed in a solution co itaining M  ions. 

AF will again be the reversible work done on the system when 

a gram-atom of N is transferred electrochemically from M(c-O) 

to M(c).  If the deposition takes place on the xz or yz planes 

of the stressed electrode, no mechanical work is done, and 

AF - n FE,|  (joules) (3) 

where F - 96,500 coulombs and E., is the cell emf in volts. 

Consequently 

V ke2 

EII " -5Hr-volt« ^ 

with kc2 in joules.  If electrodeposition occurs on the xy 

planes however, the total reveisible work consists of electrical 

plus mechanical work, done on the sy&tem, the latter being 

W ■ I r^-  f - tVo. (5) m    A     z     z 
xy 
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wh.ro Axy li the aroa of the xy plane and f, the force in the 

, direction, I li th. 9ram-atomic volume (at .tre.. ff| in fir.t 

approximation equal to V^ for .olid, or liquid..  The plus .ign 

appli«. to t.n.ion, the minu. .ign to cc««pre..ion. .ince in 

the latter ca.e the addition of matter to Mu, requires the 

.yatem to do work on th. .urroundin*. and our convention here 

is to take AW negative for thi. ca.e.  Since the change in K 

mm  «till .qual that giv.n by Eq. (2) we have 

Ex - jp ikcV2 i (v/v0)ox) - ^r ,r/2    " (6) 

where th. minu. .ign r.f.r. to t.n.lon, the plus .ign to 

compre..ion.  The .ub.cript. on I in Eq.. (4) and (6) refer 

to depo.ition (or di..olution) parallel and orthogonal to the 

applied .tr..., and a po.itive .ign implie. .pontan.ou. 

di..olution of th. .tr....d material, i.e., the latter being 

the negativ, .l.ctrod. of our hypoth.tical call. 

W. .hall aa.ume that Eq. (4) applies to the crack tip. 

If the latter i. very sharp, the eff.ct of surface tension 

must be taken into account.  The addition of an atom of M to 

a small particle under .tre.. now require, an amount of work 

H-.kcV2. ||A]tYo.V;/21 ™ 

where Q i. the atomic volume, y0  the .urface tension at zero 

stres., k8 and t, .urface Young's modulu. and .urface .tre... 
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respectively, and 

|A.2n (8) 
3n   r 

with r the effective radius of the particle.  The expression 

in brackets in Eq. (7) can also be considered the surface 

tension at bulk stress o . and we so consider it.  The analogue z 

of Eq. (4) now becomes 

■ll •A ^e2/2 + 2Y/r] (9) 

If r is negative as at the tip of a crack, Eii is reduced. 

This is intuitively clear, since the effect of surface tension 

would be to force the crack shut (i.e., increase its radius). 

Thup there is a minimum crack radius for electrochemical dis- 

solution (relative to unstrained identical material) given by 

r - 4Y/ke2 (10) 

Eq. (10) is somewhat misleading of course, in that Y is itself 

a function of I«  In a very crude way we may assume that Y is 

given by the number of "dangling bonds" per unit area and that 

these decrease linearly with the dilation. Then, for a stress 

applied along the z direction, with unconstrained sides 

where we have assumed a Poisson's ratio of 0.3. 
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With the sides constrained, we would have 

Y ■ Y0(l - EZ) (12) 

Since e < .2 in any case, it is improbable that the effect 

on Y is very great. 

Numerical Estimates 

To get some idea of the magnitude of the emf caused 

by strain we make the following assumptions, appropriate to 

Fe: 

V - 7.13 cm3 

k ■ 2.4 1012 erg/cm3 ■ 2.4 105 joule/cm3 

e • 0.1 

Y ■ 2000/erg/cm2 = 2 105 joule/cm2 

It should be noted that the value of Y may be substantially 

reduced by the presence of even a single atom layer of 

adsorbate, in view of the Gibbs adsorption equation.  We then 

find 

Ej| " 3.7 x lo"5 [125 - 4 KrVr] (13) 

so that the critical radius is -30 A.  For r > 100 A (10"6 cm) 

the surface energy term becomes unimportant and 

Eij ■ 3.7 millivolt (14) 

This value is of course extremely small and suggests that 

preferential electrochemical dissolution at the crack tip due 
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to strain is negligible. A quantitative answer can be found 

as follows.  Since the stressed region ia  oloctrically short- 

circuited to the unstressed parts of the metal, the current 

densities i and io of the dissolution reaction at the stressed 

and unstressed recions can be found from an Evans diagram: 

11 

Slope -Sc 

whence 

i-i0- 44 - E||(sA-sc) (15) 

with Ei| given by Eq. (9) viz. (13). 
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AMORPHOUS METALLIC ALLOYS 

P. E. Duwez 

Abstract 

During the last ten years, a relatively large number 

of amorphous alloys with metallic properties have been obtained 

by very rapid cooling from the liquid state.  This paper pre- 

sents a brief review of the chemical compositions of these 

alloys and the factors which appear to be important in obtain- 

ing the amorphous state after quenching from the melt.  The 

unusual electrical and magnetic properties of these alloys are 

discussed.  There is s jme strong indication that these properties 

are unaffected by rather high doses of radiation.  References 

are given to 52 papers published on the subject before June 1971. 

Praetfiif ptp Mm 
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AMORPHOUS METALLIC ALLOYS 

P. E. Duwez 

I.      Introduction 

Metallic alloys have been obtained in the amorphous 

state by three different methods; vapor deposition, electro- 

lytic or electroless deposition and quenching from the liquid 

state.  Vapor deposited copper-silver (Mader, et al., 1967) 

and gold-cobalt amorphous alloys (Mader and Nowick, 1965) 

have been -escribed Ui the literature.  Amorphous electrolytic 

deposits have been obtained in binary nickel-phosporus and 

cobalt-phosphorus alloys.  The same technique could probably 

be applied to palladium-phosphorus alloys and to ternary and 

quaternary alloys containing Mi, Co,   Pd and about 15 to 20 

at.% of phosphorus.  Until now, vapor deposition and electro- 

lysis have lead to a relatively small number of amorphous 

alloys, but an increased ef. ort In this, field is likely to 

uncover additional interesting thin films with unusual proper- 

ties.  The technique of rapidly quen-hing a liquid alloy has 

received more attention and this brief review will be limited 

to amorphous alloys obtained by this technique. 

II.     Liquin Quenching Techniques 

Various techniques for rapid quenching from the liquid 

state have been described in the literature.  (Duwez and Willens, 

1963» Pietrokowsky, 1963; Willens and Buehler, 1966; Duwez, 1968; 
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III. 

Pond .nd M.ddin. IHtl Ch.n .nd MiH.r. 1970) Mt th.» 

„r-r- m,  MN on  th. .« Principle. n«ely coolln, of 

. thin mm ot  im-ld by conduction on . .»h.tr.t. m*  of . 

,ood h..t conductor, .uch .. coppor  Vh. MM of coolln, 

r^uirod for producin, «orphou. .Hoy. I> MM- W ■- 

V0-C/..C.  For ouviou. r...on., the hi,h r.t.. of coolln, c.n 

b. obfinod onl. If th, .poclnon I. r.th.r thin, ,..er.lly 

bewtun a fow um and about SOu». 

r..r ». Zidane. — "- tSSSÜSSa  State 

The queatlon of a»orphou. ver.u. «Icrocry.talline 

.tructur. I. .till a controvar.lal on.. The .norphou. at.te 

do., not -..n compiute di.order In the ato»ic arran,.»ent and 

^al or .ho« »n,. order i. alway. pre.ent.  if the «tent 

of thl. .hort ran,, ord.r i. conparabi. to that found in the 

Uquid .täte, the term amorphou. .olid i. Ju.tlfled. 

The method. u..d to define the atomic .rran,ement by 

„.n. of an atomic di.trlbutlon function are baa- on dlf- 

Umm  by .Ith« X-r.y.. electron, or n.utron.. Sine, neutron 

diffr.ctlon .xp.rim.nt. r.,uir. .bout 1 cm> of m.t.ri.1, U 

„ impractical, bac.u.. it would invol ry UM. number 

„ qUenched foil.. So f.r no noutron diffr.ctlon .xp.rim.nt. 

h.v. b..n r.ported on amorphou. matalllc alloy.. Electron 

dl£fractlon t.chni,u.. ar. particularly u.eful In the c... of 

vapor d.po.lted thin film., «hich .re too thin for X-r.y 

di„r.ction. Th. ordin.ry .lectron diffraction pattern, ob- 

tained on a photo,raphic film, however, are not .uit.ble for 
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obtaining a precise racUal distribution function ami rather 

complicated energy analyser, must be used.  Hence, X-ray 

diffraction remains the most practical motnod for studying 

the atomic arranyenont in amorphous alloys. 

Many papers have been published .,n the analysis of 

X-ray diffraction data obtained on amorphou« solid«.  A tmemi 

study concerned mostly with liquid quenched alloy. (Gie.s.n 

and Wagner, 1971) gives a summary of mo.t of the radial di.- 

tribution functions of binary and ternary amorphou. alloy. 

recently published.  It is interesting to note that all radial 

distribution functions differ only by detail, of .•condary 

importance.  A direc: comparison botwern the radial di.trlbution 

function of an amorphous alloy and that of the .ame alloy in the 

liquid state (deduced from measurements made with the same X-ray 

diffractometer) would be the most convincing proof of the simi- 

larity between atomic arrangements in both the amorphous and the 

liquid state.  Bo far, such . compat ison exist, n..!, oetween an 

amorphou. AuJO-Gi,0 al.ioy M   liquid gold (Dernier and Guinier, 

1967).  The two radial distribution functions are slightly 

different, but it is not known hoy  much tlu presence of fi 1, 

the alloy contribu.es to this difference. 

The question of ancuofous versus microcrystalline 

structure has been revrewed recently by nixmier and Guinier 

(1971).  A study was made cf the structure of ov^Dorated 

platinum on an amorphou. carbon film.  This evaporated platinum 

is generally considered as amorphous because its interference 
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function is apparently amorphous, but a detailed atudy of its 

structure could be explained only by assuming that it consisted 

of close-packed hexagonal microcrystals containing about 13 atoms. 

In contrast with these results, the interference function of an 

electro-deposited amorphous nickel-phosphorus alloy could not 

be explained by assuming a microcrystalline structure.  This 

study, as well as that of Cargill (1970), demonstrates that in 

the case of amorphous metallic alloys, a very careful analysis 

of X-ray diffraction data taken under the best experimental 

conditions can indeed differentiate between amorphous and 

microcrystalline solids. 

The lack of contrast in transmission electronmicroscopy 

has been often considered as a proof of the amorphous nature 

of a solid.  Since the resolving power of a modern electron 

microscope is better than 10 A, micrccrystals ranging from 

7 to 17 A un sise (which is the range observed for a relatively 

large numbei of liquid quenched amorphous alloys, Sinha and 

Duwez, 1970} should be clearly detected in transmission electron- 

microscopy.  The problem, however, is not as simple as it looks. 

It was pointed out recently (Gicssen and Wagner, 1971) that 

resolving crystalline particles less than about 10 A in size 

can be achieved only if these particles do not overlap and 

those authors conclude, "It has been pointed out by Coslett 

(1966) that the resolution found in anorphous carbonaceous 

films is probably of the order of 10% of the film thickness. 

This would mean that for film thickness of less than 1000 A 
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used in transaitsion eloctronmicro«copy of ir<.tallic film*, 

thm  relatively poor resolution for amorphous alloys «ould not 

allow the observation of particles or grains of sizes as ssiall 

as those deduced fro« their diffraction patterns which »how 

only a few diftuse halos." 

Transmission electronmicroscopy is probably the best 

technique for studying the early stages of crystallisation of 

amorphous alloys.  (Willens, 1962; Crewdson, 1966» Rastogi and 

Duwex, 1970).  The studies reported so Mr, however, are only 

qualitative in nature and deal with the shape and sis« of the 

crystalline phase, or phases, growing out of the amorphous 

mitiix by heating the specimen in the microscope,  guantitative 

studies of the kinotioa of nucleation and growth of the 

crystalline phases are difficult because of the present limita- 

tions in measuring the actual temperature of the small region 

of the specimen under observation. 

Perhaps the most convincing proof of the existence of 

the glassy state is the measurement of a glass transition 

temperature Tg.  This temperature can be detected by measuring 

the specific heat which ^hows a sharj Increase around T .  Such 

measurements have been performed on amorphous Au-Si (Chen and 

Turnbull, 1967) and Pd-Si alloys (Chen and Turnbull, 1969). 

In both cases, ff is very .lose to the temperature at which 

crystallization jl the amorphous aiioy is very rapid.  For 

Au77-Gel.-Si,, for example. Tg « 285-290°K and crystallization 

temperature is about 297OK.  Another experimental fact confirming 
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« 

the amorphous nature of quenched Au ••-(;<•; ,-Si , is a viscous 

flow observed in the vicinity of T .  The viscosity varied from 

10'* to 10' poise in the temperature interval between 285 and 

305#K. 

IV.    Composition of Amorphous Alloys 

A list ol amorphous alloys mostly obtained by liquid 

quenching is given in Table I which includes references. The 

amorphous alloys which have received the most attention are 

Au-Si and Pd-Si.  Llectrolytic and vapor deposited Ni-P alloys 

have also been extensively studied. 

After the first amorphous phase in Au-Si alloys was 

obtained by quenching from the liquid state (Klemcnt, et al, 

I960), it was pointed out (Cohen and Turnbull, 1961) that the 

coriposition of this «Hoy was close to that corresponding to 

a  eutectic which has a very low melting point (370*0 compared 

with that of gold (1063*0.  This observation served as a guide 

to discover othei binary alloys likely to be amorphous after 

quenching.  Pd-Si binary alloys, with a eutectic at about 16 at.% 

Si and a eutectic temperature of about 800*C, compared with a 

melting temperature of 1550oC for Pd, turned out to be the 

easiest to quench by both the gun and the piston and anvil 

I        technique and have been the subject of numerous investigations. 

i 

I 
I 
r 

(Duwez, et al., 1965)  The Pd-Si amorphous alloys are quite 

stable, with a rapid crystallization temperature of about 420oC, 

Kinetics data indicate that no crystallization can be detected 

after more than 6 months at 200oC (Duwez, \961). 
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Given two elements in the periodic table, it is not 

yet possible to predict with certainty whether or not they 

wili lead to an amorphous alloy after quenchin.j.  The eutectic 

condition mentioned above seoms to be satisfied for all 

amorphous alloys reported so far.  When a survey is made ot 

binary alloys having low eutectics (in the sense of Au-Si alloys) 

it is found that these occur mostly between transition metals, 

or Cu, Ag and Au, and semi-metals of valence 3, 4 or 5.  These 

include B, C, Si, Gc, As and P.  In many of these low eutectic 

binary alloys the quenched foils often consist of an amorphous 

phase in which a small number of roicrocrystals are imbedded. 

In these cases the X-ray diffraction patterns consist of a series 

of broad halos typical of the amorphous state to which are 

superimposed a small number of very weak but relatively sharp 

Uragg's crystalline peaks.  This type of mixed structure can 

be confirmed by transmission electromicroscopy.  when two of 

these almost completely amorphous alloys are taken to form a 

p«eudo-binary system, the ternary alloys can be obtained very 

often in the amorphous state.  This is the case for the ternary 

alloys Pd-Ni-P, Pd-Fo-P, Pt-Ni-P, Pd-Wi-D, Fe-P-C, and Mn-P-C 

listed in Taule I. 

Several models have been proposed to describe the 

atomic arrangement in amorphous alloys.  For alloys containing 

a transition metal and a semi-metal an attractive model is 

based on a Dernal's type random packing of the transition metal 

atoms with the metalloid atoms occupying the largest voids in 
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a 

the structure.  In Pd,,-Si,, for example, the Si atoms could 

fit into the Bernal's voids if their size is approximately 

that of Si in the crystalline silicid- Pd,Si.  This model also 

accounts for the fact that in all amorphous alloys between 

transition metals „nd semi-metals, the concentration of the 

semi-metal ranges from 15 to about 27 at.% and does not exceed 

the theoretical number of large voids in the model. 

Microcrystallinc alloys have been reported in Nb-Ni 

and Ta-Ni system. (Ruhl, et al., lf67) quenched from the liquid 

state.  The compositions of these alloyj are in the vicinity of 

eutectics in the equilibrium diagrams.  These alloy, might be 

amorphous, but neither a detailed analysis of the radial dis- 

tribution function nor a measurement of their glass transition 

j       temperatures have been reported.  If they were amorphous they 

would not satisfy the above mentioned criterion requiring the 

presence of a senu-metal as a constituent of the alloys, 

j       Further experimental .tudies are required to establish the true 

amorphous state of alloys containing transition metals only. 

^     Properties of Amorphous Metillic Phases 

Amorphous metallic alloys are likely to have unusual 

properties because of their unusual structure.  In general, the 

electrical resistivity of an amorphous alloy has a very small 

temperature coefficient between 1.50C and the temperature at 

which crystallization takes place.  This small coefficient re- 

sults because most of the scattering is due to the structural 

atomic disorder and the contribution of the thermal scattering 
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is very small.  When a transition metal with a magnetic moment 

■uch as chromium is substituted for Pd in a Pd-Si alloy, a 

minimum in the rei-.stivxty vs. temperature curve is observed 

(Tsuei, et ai., 1969).  The temperature at which the wintmum 

occurs increases with increasing amounts of Cr and is about 

iOO'C for 7 at.% which is about the maximum concentration above 

which the amorphous state cannot be obtained.  between the 

minimum temperature and 1.6*Kf tne resistivity increases 

steadily with decreasing temperature and this alloy constitutes 

a very sensitive resistance thcrroomotex for low temperatures. 

(Tsuoi and Duwez, 1970). 

The existence of a minimum in the electrical resistivity- 

temperature curve of amorphous alloys containing a magnetic 

.icon is related to the Kondo effect observed in crystalline 

alloys.  One major difference, however, is that the Kondo effect 

in crystalline alloys is generally found only for low concen- 

trations of the magnetic atom, and the temperature at which the 

minimum occurs is very low.  In amorphous alloys the magnetic 

impurity content may be as high as 12 at.%.  Existing theories 

^ased on the hypothesis of a dilute impurity concentration are 

not applicable and the problem is an important one m theoretical 

solid state physics. 

Although the existence of ferromagnetism in non-crystalline 

solids has been predicted by Gubanov (1960) no such ferromagnets 

were found until recently.  Several amorphous alloys obtained 

by quenching from the liquid state arc ferromagnetic.  In 
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particular the Fe7s-Pii-Ci« alloy (Duwez aru Lin, 1967) has a 

saturation magnetization above 12,000 G, a cohesive force of 

3 Oc and a Curie temperature of 320eC.  Many questions are still 

unanswered on the exact nature of ferromagnetism in non-periodic 

structures.  It is not yet clearly ertablished whether or not 

domain boundaries exist in amorphous ferromagnets, and if so, 

what is their origin, their width and their mobility.  These 

new alloys present a challenge to experimental and theoretical 

solid state physicists. 

Little attention has been given so far to the mechanical 

properties of metallic glasses.  As expected, these materials 

exhibit very small plastic flow in tension.  The following 

properties have been recently reported for a Pdto'Sije amorphous 

alloy (Masumoto and Mad'tin, 1971); yield strength 87.2 kg/mm7, 

fracture strength 136.4 kg/nun", elongatim 0.11%, Young's 

modulus, 6.8 * 10' kg/mm2.  Slightly higher elongation values 

were found in a Pdti.«-Siii,) alloy in which some Pd was replaced 

by 14 at.% of Us, Ag or Cu (Chen and Wang, 1971).  The elongation 

in this case was between 1 and 3%.  In spite of this apparent 

brittleness in a tension test, Pdn-Sijo glassy alloys have 

been rolled at room temperature from 40 down to about 13um 

thick without cracking (Ouwez, 1970, unpublished).  No change 

in the X-ray diffraction pattern nor in the electrical re- 

sistivity could be detected after rolling. 

Only one study of the effect of radiation on the structure 

and properties of a glassy alloy has been reported (Lesueur, 1968). 
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A foil of Pdto-Si»o amorphous alloy obtdined by the piston and 

anvil technique was covered with a layer of U21* and subjected 

to a neutron flur. in a reactor.  The damage due to fission 

products was monitored by both X-ray diffraction and electrical 

resistivity.  After having bnen subjected to a total dose of 

5.6 fission products/cm2, no detectable changes were observed 

in either the diffraction pattern or the electrical resis- 

tivity measured at both room and liquid nitrogen temperature. 

An interesting experiment, also performed by Lesuer, was to 

expose a specimen of the same alloy Pdo-Sijo in the crystal- 

line equilibrium state to the same accumulated dose of fission 

products.  In this case, the intensity of the Bragg diffraction 

peaks progressively decreased and the intensity of the halos 

typical of the amorphous phase increased as irradiation pro- 

ceeded.  The electrical resistivity of this sample increased 

smoothly and was approaching that of the amorphous state at 

the final dose of 5.6 " lO* fission productr/cma. 

VI.    Conclusions 

Amorphous metallic alloys constitute a relatively new 

class of solids.  AL the present time one of the reasons for 

studying these materials is their possible contribution to the 

understanding of the metallic state in ditordered solids and 

the relationship between such solids and the liquid state. 

Very few practical applications have been suggested for this 

new class of materials (Tsuei and Duwez, 1971).  Thrir unusual 

electrical properties, and also perhaps magnetic properties 
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combined with their resistance to radiation damage (Lesueur, 

1968) are likely to be exploited in special purpose electronic 

devices. 

Some of the important problems related to amorphous 

metallic alloys aret 

1. Structural investigations of the atomic arrangement in the 

alloys.  It is already established that most of the alloys 

reported so far are really amorphous (in the sense of liquid- 

like) and not microcrystalline.  This 'as been deduced from 

accurate studies of the radial distribution function obtained 

from X-ray diffraction data, and comparing these results with 

those obtained on liquid alloys.  A perhaps More definite proof 

of the amorphous or glassy state is the measurement of a glass 

transition temperature deduced from specific heat determination 

or viscous flow measurements.  The now widely accepted model 

for the structure of amorphous alloys is a  Bemal's packing of 

the transition metal atom with the semi-m^tal located in the 

larger voids of this packing.  Additional work is needed in 

this area to establish this model on firmer grounds. 

2. What are the alloy compositions susceptible to be quenched 

into an amorphous solid by quenching from the liquid state is 

an important and still unsolved problem.  The empirical rules 

proposed are that the main element in the alloy is a transition 

metal forming a low temperature autectic with a semi-metal of 

valence 3, 4 or 5.  Amorphous alloys are generally found around 

the eutectic composition and the semi-metal concentration is 
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from about 15 to 27 at.%.  'his concentration ranga is compatible 

with the number of large voids in the Bemal*a packing of hard 

spheres.  Theoretical work in this field is required. 

3. The electrical resistivity of amorphous metallic alloyo 

is temperature insensitive down to 20K or lower.  This is 

qualitatively understood since most of the scattering is due 

to the high degree of disorder and the relatively small contri- 

bution of phonon scattering.  What is not understood is that 

the temperature coefficient of resistivity can be changed from 

positive to negative by, for example« changing the Pt to Ni 

ratio in a ternary alloy Pt-Ni-P (Sinha, 1970) or by changing 

the phosphorus content in a Pd-Ni-P alloy and keeping the Pd 

to Ni ratio constant (Boucher, 1971).  This problem requires 

an analysis of the Lmd structure in amorphous metallic alloys. 

A minimum in the electrical resistivity vs. temperature curves 

of amorphous alloys containing magnetic elements is similar to 

a Kondo effect in crystalline alloys.  However, in amorphous 

alloys this minimum persists as the concentration of the magnetic 

element is increased up to 12 at.I and may occur at temperatures 

as high as 200oC.  Amorphous alloys constitute an interesting 

class for the study of the resistivity minimum problem in alloys 

containing a relatively high concentration of magnetic elements 

for which the d-d interaction cannot be neglected.  More experi- 

mental and theoretical work is needed in this field. 

4. The existence of ferromagnetism in amorphous alloys has 

been demonstrated, but few measurements have been made of the 
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inainetic properties.  This field is of fundamental interest 

and the possibilities for practical applications are still 

unexplored. 

5. Interest in the mechanical properties of amorphous alloys 

is just beginning.  Preliminary results, however, already bring 

up puzzling questions.  While an amorphous alloy appears to 

lead to a brittle fracture ir tension, it can be rolled to about 

1/3 of its thickness at room temperature, which is several hundred 

degrees below the glass transition temperature.  The origin of 

this apparent plasticity (or viscous flow) should be a rewarding 

field of study. 

6. Preliminary experiments have shown that amorphous metals 

are insensitive to heavy doses of radiation.  More accurate 

experiments should be performed to detect the exact nature of 

the effe L of heavy particles (especially fission products) on 

the atomic configuration of the glassy structure.  It has also 

been shown that when a crystalline alloy such as Pdie-Siie which 

can be obtained in the amorphous state by quenching from the 

liquid state is bombarded by fission products, it becomes 

amorphous.  This raises the question of knowing if an alloy 

susceptible to become amorphous by liquid quenching Lt also 

susceptible to becoming amorphous by radiation damage.  If so, 

what are the reasons for this behavior? 

In summa y, a large number of amorphous alloys covering 

a wide range of compositions have been obtained durinq the last 

ten years.  Classical solid state physics of metals is based 
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on the existence of a periodic lattice.  Amorphou« alloy» 

open the door to an extenUon of the claaaical concept on 

disordered systems, which so far was limited to liquid Metallic 

alloys. 
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Alloys 

Au,,-81,, 

Au7»-8ii*-Ge, 

Pd,o»-x-Six 

TABLE I 

Aroorphou« Alloys 

Range 

I6<x<22 

Nlic-x-Px (Electrol«««)  15<x<20 
(Electrolytic) lS<x<24 
(Vapor Oepoaited) 

(Pd,oo-x-Tx)io-Sia,      x<10 
T-Cr, Mn,Fe,Co or Nx 

(Pd|o,.x-Nix)P,, 15<x<90 

(Pdi,,.x-rex)P,, 17<x<55 

(Pt,,9«x-Nix)Pji 20<x<60 

(PdiB-Ni^oJBi, 

(Pd$,-Nl$0),00.x-px      16<x<26.J 

FeTi-Pu-Ci, to 
Fe,o-P|i-C? 

Mn^-P,,-Ci0 

(Feioo-x-Mnx)7i-Pij-Cio   0<x<100 

Reference 

Klement et al. (1960) 
Dixmier and Guinier (1967) 
Chen and Turnbull (1967) 

Bagley and Turnbull (1968) 
Chen and Turnbull (1970) 

Duwez et al. (1965) 
Crewdson (1966) 
Chen and Turnbull (1969) 

Oixmier et al. (1969) 
Cargill (1970) 
Bagley and Turnbull (1970) 

Tsuei and Duwez (19f6) 
Tsuei and Hasegawa (1969) 
Hasegawa (1970) 

Naitrepicrre (1969) 
Maitrepierre (1970) 

Naitrepierre (1969) 

Sinha (1970) 
Sinha and Duwez (1970) 

Liang and Tsuei (1971) 

Dixmier (to be published) 

Lin and Duwez (1969) 
Lin (1969a) 
Lin (1969b) 
Rastogi and Duwez (1970) 

Hasegawa (1971) 

Sinha (1971) 
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DIFFUSION THROUGH ANISOTROPIC POLYMER SYSTEMS 

John D. Ferry 

Abstract 

An experiment is proposed to provide information 

about the effects of large deformations on the local molecular 

mobility in rubbery polymers, and the mechanism of translatory 

motion of foreign molecules, either small (molecular weight 

about 200) or polymeric (lO^lO5).  Diffusion of a radio- 

actively tagged penetrant from a print source in a stretched 

strip is monitored by autoradiograthy, giving the ratio of 

diffusion coefficients in the two principal directions.  The 

absolute coefficient in the stretch direction is obtained by 

diffusion from a line source, and compared with that for the 

Isotropie polymer.  Free volume fluctuation theory can be 

used to provide a coefficient which measures the relative ease 

of penetration in different directions, probably influenced 

also by the shape and flexibility of the penetrant molecule. 

Polymeric penetrants may reveal additional effects associated 

with entanglement coupling, related also to the density of 

cross-links in the polymer matrix. 
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DIFFUSION THÄOUGH ANISOTROPIC POLYMER SYSTEMS 

John D. Perry 

!•     Introduction 

The diffusion coefficients of small molecules (i.e., 

molecular weights of the order of 200) through rubbery polymers 

can be measured by use of radioactjively tagged penetrante in 

trace amounts.1-1 They reflect the local mobilities of polymer 

segments and can be closely correlated with viscoelastic 

relaxation times.  Th«» dependence of diffusion coefficient D, 

and of the friction coefficient CJ ■ kT/D, on temperature, 

chemical composition of polymer, and concentration of diluent 

can be described in terms of the effects of these variables on 

the fractional free volume.^ A central parameter in the free 

volume treatment is a dimensionleas coefficient B. which may be 

qualitatively interpreted as tha ratio of the volume opening 

required for translatory motion of a penetrant molecule (or 

mobile segment thereof) to the volume of a mobile polymer seg- 

ment.  This parameter is of the order of unity but depends 

somewhat on ehe shape and size of the penetrant molecule.* 

There is very little known about local molecular mo- 

bility in rubbery polymers in highly strained states where the 

molecules are substantially oriented but still in rapid thermal 

motion.  Measurements of diffusion anisotropy in strained 

polymers are a potential source of such information and also 
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perhaps of under.tandinq the »echani.m of translatory motion 

of «««11 foreign molecule«.  Some preliminary experiment«4 

failed to find any difference between the diffueion coefficients 

of n-hexadecane and 1.1-diphenyl ethane through biaxially 

«tretched rubber« (perpendicular to the «tretch direction) and 

through the «ante rubber« in the i.otropic state.  However, the«e 

polymer« were far above their gla«« tranaition temperature« 

(T ), and it can now be anticipated that D will be more «en«!- 
9 

tive to aniaotropy at temperature« only «lightly above Tq t«ee 

below).  By u«e of uniaxial rather then biaxial extenaion. D can 

be conveniently measured in two direction«. 

II,    Propo«ed Experiment 

A «trip of cro««-.Unked rubber is subjected to simple 

extension (a relative stretch of 2 or more) and diffusion of 

a radioactively tagged penetrant from a point source is observed 

by autoradiography. The ratio D,/D, for diffusion parallel 

and perpendicular to the stretch directions is readily obtainable 

as (xj/x,)1, where the x's are the axes of the ellipses of 

constant concentration at a given elapsed time.7  (The analogous 

problem in heat conduction was «tudied by de SÄnarmont' in 1848.) 

Calculation of abaolute value« from thi« geometry i« quite 

complicated, but D, can be obtained by autoradiography of dif- 

fu«ion from a line «ource appliad perpendicular to the stretch 

direction» if c is the concentration at diatance x and time t, 

a plot of log c/t against xVt gives a line with slope inversely 

proportional to D,.' Moreover, a «imilar experiment with an 
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unstretched «trip yield« the Isotropie diffusion coefficient D 

(though this is also obtainable by other convenient methods'). 

It is assumed that the gradient of concentration across the 

film thickness becomes negligible in a relatively short time 

and that autoradiographic exposures can be obtained in short 

intervals. 

II1-   Interpretation for Small Penetrant Molecules 

Phenomenological.  The relations among Dp, D» and Dj 

are of interest.  If there is negligible volume change with 

deformation, analogy with refractive index suggests that for 

small deformations Do - (Ü! + 2D2)/3.  Possible relations for 

large deformations have not yet been examined. 

Molecular.  The free volume theory provides the simple 

relation1* 

ln(D/T) - (Bd/f) + const. 

where f is the average fractional free volume, a quantity which 

can be estimated from the temperature dependence of D by this 

equation (and in other ways).  If there is no volume change on 

deformation, f should not be affected, and the anisotropy in D 

should reflect anisotropy in the parameter Bd, which may be 

regarded as a measure of the relative ease of penetration. 

ln(D,/D2) - (l/f)(Bdi - Bd2) 

ln(D,/Do) - (l/f)(B.1 - B^ ) 
di   do' 

0 
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Near the glass transition temperature, f will be small and the 

differences will be greatest. 

Alternatively, if Di and Da are measured over a range 

of temperatures, it can be shown that a plot of log Di vs. log D2 

gives a line with slope Bdl/Bd2.  (An analogous treatment for 

comparing different penetrant molecules is given in Reference 5.) 

The dependence of B. on direction, magnitude of strain, 

and size, shape, and rigidity of penetrant should provide some 

insight into the mechanism of motion through the polymer. 

IV.    Diffusion of Oliqomers and Polymers 

It is also of interest to examine the diffusion of 

linear oligomers (molecular weight of the order of 2000) or 

moderately high polymers (50,000) through rubbery polymers in 

both uncross-linked and cross-linked states.  There have been 

very few studies of this kind even for Isotropie systems.  By 

use of rubbers with very high internal mobility (polydimethyl 

siloxane, 1,4-polybutadiene), experiments within a reasonable 

time scale should be possible. For oligomers, it is probable 

that the effect of deformation will be very similar to that 

for smaller molecules.  For polymers long enough to experience 

entanglement coupling with the matrix, additional effects may 

appear. 

The diffusion of long linear molecules through a cross- 

linked network has been recently treated theoretically by 

de Gennes.10  He predicts, somewhat surprisingly, that the 

diffusion coefficient is independent of the distance between 
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cross-links provided this is small compared with total molecular 

length but large compared with the length of a moving segment. 

However, entanglement coupling is not taken into account; this 

will probably be strongly affected by cross-link density. 
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REMARKS ON MONTROLL'S 

NON-LINEAR WAVE EQUATION 

George H. Vineyard 

• • 

Abstract 

A «olvabl« non-linaar intagro-diffarantlal aquation 

which i« a conceivabla nodal for «hock wave phanomana i« 

examined. Condltlona for the axletence of an energy integral 

of the equation are determined and found to Impoae severe 

reatrlctlone on the coefficients. 

Priciiiig pan Mart 
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REMARKS ON NONTROLL'S 

NON-LINEAR WAVE EQUATION 

Georg« H. Vineyard 

Montroil' has given the remerKeble re»ult that the 

non-linear integro-differential equation 

3 "t»|t? " J8»<r-r,>y(r;t)dr' ♦ |J8,(r-r,-r")U(r;t)U{ryt)dr'drM 
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♦ JJJ8,(r-r,-r•-r•••)U(rJt)U(r!;t)U(rMJt)dr•dr"dr•" ♦S^r),  (1) 

where S^r), Si(r), S,(r). and 8» (r) are arbitrary functions of 

the spatial variable, can be solved exactly*. 

yp- - V'u is a special case of this equation, obtained 

by putting S, (r) - «"(r) and S.-S.-S-.-O. and since non-linear 

wave equations are almost never susceptible to exact solutions, 

the result is of interest and in particular suggests that some 

shock wave phenomena might be illuminated by solutions of this 

equation. 

The equation was postulated for reasons of mathematical 

accessibility, and possible physical meanings of its non-linear 

terms are not obvious.  It may also be noted that a vector or 

•E. Montroil, to be published.  The solution is expressible as 
a Fourier transform of an algebraic function of Weierstrass 
elliptic functions.  The parameters of the elliptic function 
depend on Fourier transforms of the kernel functions Sn(r). 

•Our definition of S|...S« differs from Montroil*s by numerical       ■"■ 
factors. 
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/(lr]adr+,»//s2(r-r')ü(r)U(r')drdr'+flfffü(r)ü(r')ü(r'')drdr'dr 

S. 
*^JJJJü(r)ü(r')U(r")ü(r-)drdr'dr"dr"' + fs;(r)ü(r)dr . (7) 

00 J 

Th^ qu«.tion whether other Integrals of the equation 

exiat ha« not been answered. 
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"RANDOM CLOSE PACKING" OF SPHERES 

George H. Vineyard 

Abstract 

Elementary considerations of the density of a "random 

close packed" arrangement of hard spheres are given. 

Preceding pate Wank 
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"RANDOM CLOSE PACKING" OF SPHERES 

George H. Vineyard 

Bernal and Finney1 and Scott and Kilgore2 have ex- 

perimented with assemblages of identical hard spheres and 

have found that, in addition to the familiar crystalline 

close-packed arrangements, there exists an apparently well 

defined pseudo-random arrangement called by these authors 

"random close packing". This arrangement is looser than 

close packing, possesses a wide variety of coordination 

numbers and has no long range order. Assemblages of ball 

bearings can be made to assume this packing when thoroughly 

shaken up in containers of irregular form.  Any flat surfaces 

on the containers nucleate ordered arrangements and prevent 

the achievement of random close packing. 

The apparently well defined character of the random 

arrangement is surprising. The arrangement is of interest as 

a prototype of liquid and amorphous structures.  It also 

offers a challenging set of problems in statistical geometry. 

One of the striking properties of random close packing 

is the apparently well defined mean density.  Scott and Kilgore, 

working with up to 25,000 h"  steel ball bearings and carrying 

out careful extrapolations to eliminate surface effects found 

a mean density (volume occupied by material divided by total 

volume) 

-292- 



u 

.. 

li 

prcp - 0'6366 * .0005; 

this is to be compared with the mean density of close-packed 

arrangements 

pcp = ^T1" 0-7405- 

In this note, a very simple argument will be suggested 

by which the approximate density of a random close packed 

arrangement can be estimated.  The argument may be useful for 

extension to other pseudo-random systems, and for further in- 

quiry into the nature of random close packing. 

Since the models with which random packing has been 

investigated are static, we are concerned with the geometry of 

static assemblages of spheres.  The volume of a large assemblage 

is a minimum at close packing, and reaches a larger, metastable 

value in random close packing. We start by supposing that the 

random arrangement can be produced by successive elemental dis- 

orderings applied to an arrangement that is initially close 

packed.  Suppose that there is a parameter o which measures the 

disorder of an arrangement.  Define a to lie between 0 and 1, 

with a - 0 corresponding to complete order,  o » 1 corresponding 

to complete disorder, a might be taken as a measure of the 

fraction of the atoms that have been moved off lattice sites. 

The volume, V, of an arrangement may be supposed to depend only 

on o.  The derivative of volume with respect to a will then be 

a function of a,  and we write 

11 
'1 
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where V is the volume of the ordered assembly.  It «eems 
o 

clear that f(o) will be a maximum at o • 0, and will decline 

monotonically to zero at o - 1, for in the perfectly ordered 

arrangement, the introduction of an element of diaorder will 

cause the maximum expansion» the more disordered the arrange- 

ment the less the volume increase that will occur with intro- 

duction of further disorder, and at complete disorder (random 

close packing) disordering operations cannot increase the 

volume. 

The simplest form of f(o) which possesses the above 

properties is 

f (o) - a(l-o)p U) 

where a and p are constants yet to be determined. 

Starting from the close-packed arrangement of hard 

spheres, removal of a single sphere does not allow any dis- 

ordering, but removal of a pair of near neighbors from close 

packed plane B in the stacking sequence hBk  will.  Suppose 

this pair be moved to the surface of the set, increasing the 

volume by 2 vo (where vo is an atomic volume).  In Pig. 1 this 

is the pair 1 2. Then ball 3 can be moved io the point 4 in the 

close packed, plane, producing an elementary region of stacking 

fault with no further increase in volume.  The triplet 12 3 

has been involved in this elementary disordering.  If ^ small 
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number n o« triplet» of this kind have been introduced, the 

voliwe Increeae haa been 2nv, and the fraction of atoms re- 

moved fro« lattice aitea (including those moved to the surface) 

iS to   - 3n/N.  Thus, 

AV   2 
So " 1 v« »or 

I dV  2 
77 ar?" T    <«<<!)     . o) 

Thia identifies the constant a in £q. (2) as i . 

We have attempted to determine p by considering th? 

second order correction to the volume change caused by intro- 

ducing further elements of disorder into a set containing a 

finite number of triplets. The results are complex and have 

not lead to a convincing value of p.  Further study of a 

systematic way of defining o and averaging over the various 

kinds of interacting clusters that can be introduced may allow 

a direct determination of p. One calculation has yielded 

different definition of o than that given o - 4 ftnd P " 3» 

but it ia not clear that the calculation is correct. 

Eg. (2) can be integrated to give 

V-Vt    (l-o)p,fl 

V, ■ 0 ' p^l—   •  ?or the transformation 

from close packing to random close packing thia becomes 

VroP-
v'   a 

"^T p?T  ' <4) 

Since V % -, the experimental results of Scott and Kilgore 
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quoted earlier give 

VrcP-
V»  Pep 

vT"  ■ p~ - 1 - 0.1632 ±   .0007 
rep 

Eq. (4) th.„ requires the exponent p to be .bout 3, in .gree- I 

ment with the eeriier (but not firm) re.ult of e direct 

calculation. 
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NOTE ON IR WINDOWS TRAVERSED BY 

SHORT LASER PULSES* 

N. Bloembergen 

Abitract 

.- 

Contld«r«bU •tt.ntion has been devoted to the thermal 

loedinq with re.ultent deforwition end beam distortion, when 

«n infrared UtW beam traverse« a window material.  In com- 

p«rin9 window ««terlaU, It has typically been assumed that 

the laser beam would be on for a period of many milliseconds 

or lonqmt.    It li pointed out In this note that a different 

situation prevails when the duration of the laser pulse Is 

shorter than the tlM required by a sound wave to traverse the 

window, in the limit of very short pulses the beam deformation 

due to residual absorption In the window Is largely determined 

by <>n/aT»ttraln. tlnco the peak powers in the short pulses 

will be order« of magnitude higher than lr pulses lasting 

•llll«econd« or «econd«, attention «hould be p«ld to other 

po««ible mode« of window failure In thl« regime. 

fnaiic Pfi IM 
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NOTE ON IR WINDOWS TRAVERSED BY 

SHORT LASER PULSES 

N. Bloembergen 

I«     Introduction 

It is well established that the transmission of high 

power diffraction limited IR laser beams through windows is 

limited by the optical distortion introduced in the window 

by the (low) residual absorption losses of the window material. 

The performance of different materials has been analyzed and 

compared on the basis that the IR laser beam is switched on 

for a relatively long time, typically on the order of one 

second. This time is short enough that thermal diffusion may 

be ignored and the temperature rise in each volume element in 

the window may be calculated from the total energy absorbed 

in that element.  The on-time of the laser beam is long enough, 

however, that the deformation of the window resulting from the 

thermal stresses may be calculated in a static manner.  For 

the many detailed results that have been obtained for this 

mode of operation we refer to a number of recent technical 

reports1"'*. 

Recently, high-power IR lasers with good optical beam 

quality have been operated in short pulsed modes.  These lasers 

are typically of the transversely excited discharge type with 

the active gas at relatively high pressure.  The optical uni- 

formity of the gas characteristics is improved by pre-ionization 
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technique, it may th.r.fora b« anticipated that relatively 

high energy IR pul.e. of .hort duration, .ay one «Icroiecond 

or le.., wxll become available. It .hould be noted that the 

total energy required to induce material damage in .one appli- 

cations may be reduced up to an order of magnitude for «hort 

pul.es, as the damage mechanism changes from heat ablation to 

spallation. 

Consequently the thermal loading of IR windows would 

be reduced by the same factor,  it turns out that the previous 

analyses1'" require considerable modification if the pulse 

duration becomes comparable to or shorter than the time re- 

quired for a sound wave to traverse the window dimension.  In 

that case inertial effects become important in the elastic 

behavior and the quasi-static deformation analysis loses its 

validity.  In the next section a qualitative discussion of 

window distortion by a single very short pulse is given, while 

|j      other possible failure mechanisms besides linear energy ab- 

sorption loss are mentioned in the third section.  The final 

j I      section summarizes this note in a number of conclusions and 

recommendations. 

"•    Thermal Beam Distortion of a Verv short Laser Pulse 
in an IR Window 

Consider a plane parallel IR window, as shown in 

Figure 1, of thickness Lo and radius Mi «nd a very short 

incident laser pulse of duration tp « Lo/c£.  Here c£ is the 

propagation velocity of the fastest acoustical wave mode that 
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propagat« in the crystal.  During the duration of the laser 

pulse, the window material has no time to deform.  The amount 

of heat deposited by residual absorption loss mechanism will 

heat each volume element at constant strain.  The phase front 

of the wave will only be affected by the intrinsic dependence 

at constant strain and volume of the index of refraction.  One 

has 

An (p,t) - (1$) AT (p.t) (1) 
strain 

AT (p,t) - S- '  I, (p,t') df (2) S '• 
Herr- C is the specific heat at constant volume, 6 is the 

absorption coefficient, which is assumed small, 0Lo << 1, so 

that the bean pulse intensity lo (p,t) is independent of z. 

The phase variation at the exit plane is 

A* <p,t) - 2Tr (L,/X)    An (p,t)  . (3) 

Note that there is no window distortion on this time scale, 

nor has there been sufficient time lapse for stress birefringence 

to develop. 

The relevant material constant tN|/tT) t ,  may be 

deduced Cor cubic crystals from known variation of the index of 

refraction with the temperature and pressure P, the thermal 

volume expansion and the compressibility. 
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It «ay be oxpectea th.t (»^»1^^, I. ,naU for the lonlc 

U      crytal. with reUtivoly Ur,. .n.r,y ,.„..  Th, can,ltlate. 

p      with the iowe.t product HUr,/»)/^  would .,*!„ b,. NaCt, KC. 

M KBr. Th. cov.lent «.t.rl.l, .„d „.t.ri.l. with very he.vy 

pol.rl.^1. ion. would b. 1... tavottbla  (ron tl)lg ^  of 
view. 

li After the pa..a9e of the very .hort le.er pulee the 

T      WindOW WOUld d"0r- in • M" i"t.rv.l on the order of p./c, 
to th. deformed .tat. pr.vlou.ly ...u»^-. Th.n coeUn<! 

J      «.oh.nl». d..crlb«i pr.vlou.ly-«, ,uch .. .up.rcoolln, by 

».. J.t. on th. window .urf.c«, .hould r.,tor. th. Inltl.l 

|      unlfor« window condition In . tl« 1... th,n , t„  ,.cond,( 

.      .ft.r which .nothor .hort pul.. could b. flr.d. 

It 1. of .on. lnt.r..t to m.ke .n .umitt.dly v.ry 

J      q^HUtlv. .xpl.n.tlon .bout th. p.rtl.1 c.nc.ll.tlon of 
(3n/»T)itrMt .M th, ,„,ot ,, window dl,tortlon tor m 

0      .IX.llh.Ud.. MUMM in th. ..rll.r «port.. Con.ld.r th. 

..      hypoth.tlc.l c... MM th. window h.. h.d tine to defon. 

el..tlc.Uy in .... .-direction .. indict«, by th. dotted 

line, in the Pl9ure Ik. but there 1. no d.fon»tlon In th. 

r.dl.l dlr.ctlon. Thl. .itu.tlon nny b. .pproxl«.t.d phy.lc.Uy 
in . tl«. infrv.! «^ , , , .^ slnc# ^ ^^ ^ 
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patmllml  to th« «-direction •till traverdes the same total 

«mount of material, i.e.. it passes by the same number of 

positive and negative ions, there is no change In phase shift, ^ 

if changes in local field corrections due to the deformation 

could be ignored.  Thus the r^t of On/3T)i|tre88 due to 

expansion is compensated by the curvature of the window sur- 

faces.  The uncompensated part is On/3T)gtrain and this 

quantity is more fundamental from a physical point of view. 

Clearly, the actual situation will be further complicated by 

changes in local field corrections and by subsequent expansions 

in the radial direction (Poisson's modulus). 

Although it is clearly important to extend the analysis 

to a more quantitative treatment of the transient development 

of phase distortion in the window, the argument shows that for 

a given amount of total energy in the laser pulse, the distortion     J 

for short pulses will certainly not be worse than for longer 

pulses.  It might be considerably better, if a material could 

be found with a very small value of On/3T)itrain. The main - 

obvious advantage of short pulses would result from the fact 

that the total energy per pulse for a required effect would be        | 

considerably reduced with a concomitant reduction in wave front 

distortion by the loss mechanisms. 

HI.   other Failure Mechanisms 

When the pulse < .ration is short, it is necessary to 

consider the conseuqences of the use of higher peak power 

densities, say up to 10 megawatts/cm2.  It is conceivable that 
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limitations other than thermally-Induced optical beam dis- 

tortion become Important. The following nonlinear optical or 

mechanical properties must be considered. 

The sudden heat production will produce acoustical 

disturbances ana possibly some shock waves after the light 

pulse has passed through.  It Is precisely by these mechanisms 

that the window will approach its equilibrium elastic deform- 

ation as discussed above.  It should be pointed out that the 

thermal shock is very mild corresponding to maximum temperature 

differentials of about 10C in low absorption window materials. 

It is well established that the Intrinsic mechanical and 

electric breakdown threshold for bulk alkali halide crystals 

lies in the range of 1010 to 10M watts/cm2 for 10.6y radiation5 

Although the contemplated peak power density levels of 107 

watts/cm2 do not seem to represent a serious threat to the bulk 

material, it is nevertheless Important to obtain experimental 

data on the probability of breakdown in bulk materials by re- 

peated pulses, and on the influence of surfaces and impurities 

in the regime of short intense pulses. 

Nonlinear absorption mechanisms which should be con- 

sidered include the following: 

1. Raman scattering, followed by subsequent absorption of the 

stokes (or anti-stokes) shifted light. 

2. Two photon absorption and multiphoton absorption processes. 

3. Harmonic generation with subsequent linear absorption of 

the harmonic.  Rough estimates indicate that, at power flux 
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(3) 
Here x   is the third order nonlinear susceptibility, E. Is 
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densities of 10* watts/cm2, these processes are less important 

than the linear absorption mechanism with 0 ^ lO-'cm"1.  The 

nonlinear mechanisms will become of importance relatively 

sooner in the semiconductors with large nonlinear suscepti- 

bilities than in the alkali hallde crystals.  Clearly, quanti- 

tative results for these nonlinear mechanisms in different 

materials must be tabulated. 

Particular attention should be paid to the phenomenon 

of self-focusing.  It is well known that this mechanims presents 

a limitation in high power Nd-glass laser rods.  Since it leads 

to a large Increase in the effective power flux density, it may 

constitute a threshold for material breakdown.  Since the quad- 

ratic Kerr-type nonllnearltles are known''7 for many alkali- 

hallde and semiconductor materials of groups IV, III-V and 

II-VI, the effect may be readily estimated.  It is not expected 

to constitute a serious breakdown limitation for the range of 

beam sizes, power flux densities and window thicknesses of 

Interest. 

Nonlinear index changes could, however, have some effect 

on the optical beam distortion.  This may be seen by comparing 

the nonlinear change in index of refraction proportional to the 

intensity with the thermally-induced change in index given by 

Eq. (1), 

Annonlinear -"»l^2 " 2^(3)|EL|Vno       (5) 
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(3) 
the amplitude of the electric field in the beam.  xVJ' haa been 

[j      measured for several semiconductors« for frequency mixing at 

10.6u.  Its magnitude is on the order of KT11 esu for Ge, GaAs 

Ll      and other semiconductors with a sufficiently low concentration 

of conduction electrons. A power flux density of 107 watts/cm2 

corresponds to JEj2 ^ 3 x lO* «.u.  Thus Annonlinear ■ lO"6. 

1 I      This is still one or two orders of magnitude smaller than the 

thennally-induced effect in these materials. Portunately, the 

nonlinear index change has even less relative importance in 

the alkali-halides, since for these x(3) ■ lO"** to lO"1« esu. 

Thus the nonlinear effects decrease by a larger factor than 

the thermally-induced linear effect.  It is clear that for the 

highest peak power pulses alkali halide windows have a decisive 

advantage over covalent materials because of the smallness of 

their nonlinear coefficients. 

IV.    Conclusionc 

1. It is desirable to analyze in more detail the 

behaviro of IR window materials subjected to short laser pulses 

with t < lO"8 sec. 

2. Figures of merit of different materials will be 

quantitatively different in this regime, but the alkali halide 

jj      crystals are expected to be significantly better than semi- 

conductor crystals and glasses, from the standpoint of beam 

distortion. 

3. At peak power density levels higher than 107 watts 

/cm2, serious attention must be paid to the nonlinear optical 
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properties of the window materials. 
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LINE TENSION AND KINKS ON FRACTURE CRACKS 

J. J. Gilntan 
J. P. Hirth 
R. N. Thomson 

Abstract 

Ths concspt of lino tsnsion for a crack is explored 

and applied to the atomic kink on a crack. The line tension 

turns out to be so dependent upon shape that a simple use of 

it as in dislocation theory is not possible. For atomic 

kinks, the argument leads to the prediction of an abrupt kink 

shape. The activation energy of the kink is not unique, but 

has values over a range from sero to a maximum value. This 

range of activation energies results from the lattice trapping 

plateau for the crack. 
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LINE TENSION AND KINKS ON FRACTURE CRACKS 

J. J. Oilman 
J. P. Hlrth 
R. M. Thomson 

I.     Introduction 

Like the dislocation, the fracture crack Is a line 

defect In a solid, and both are special cases of the general 

Somlgllana dislocation.  Three dimensional theories of both 

are difficult, but both can be treated with a fair degree of 

completeness and rigor In two dimensions, In large part because 

of the power of complex function theory. Consequently, when 

It was noticed very early In dislocation theory1 that a dis- 

location line In three dimensions possessed many of the attri- 

butes of a flexible string, the string model of the dislocation 

became an Important part of the lore of dislocation theory. 

In the string analogy (whether applied to a crack or 

to a dislocation) the assumption Is made that the energy of 

the line defect can be represented as an energy density seated 

In the geometric line representing the defect, and that other 

forces act on the line as point functions of the line position. 

The total potential energy of the solid Is then a functional 

of the line position and length. 

v.j (edÄ + (j)(x) dx) (1) 

where e Is the energy density per unit length of line and 
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♦(x) 1« any contribution to th« potontial mnmrqy  of a aagaant 

of Una at tha point x.  Zn a yanaral caaa, c My alto ba a 

function of petition, and rt  alopa, curvatur«, ate. of tha 

U      Una. Por tha dislocation, tha anargy danaity 1« roughly 

Lj t - M'b" in R/b (2) 

whar« u*  la aona kind of modulus, b ia tha Burgara vactor, 

and R ia aona kind of outar cut off.  Zn fact, R dapanda upon 

tha ahapa of tha Una, and hanca (2) vlolatas tha basic as- 

sumption that tha anargy danaity la a point function. Tha 

succast of tha Una tanaion approximation rasts upon tha fact 

that tha ahapa dapandant tan sits undar a logarithm, and for 

many applicationa, tha Una tanaion la simply takan to ba a 

constant. Aa wa ahall aaa for tha crack tha analogous situ- 

ation la not ao fortuitous. 

Ona of tha Important applicatlr.na of tha Una tension 

concept in dislocation theory is in working out tha rasponsa 

of tha dislocation to the Paiarla anargy. Zn thia caaa, ona 

ia lad to a theory of kinks', and in thia paper we ahall follow 

a similar line of argument. 

Recently, lattice trapping of fracture cracks has been 

suggested In direct analogy to the Peiarls crystallographic 

energy barriers of dislocations». Computer calculations have 

alao been reported of kinks on cracka in diacrete calculations*, 

and indicate aignifleant crack kink energlea. Thia paper ia 

an attempt to aaaay the Importance that line tenalon may be 
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*bl« to play in dUoutaions of thcnul kink»  on « crack llnv. 

ZZ.    Lino Tontton ApproKiaation 

Aa in dialocatlon thaory, w« must idantlfy which tarma 

in (1) for cracka ar« proportional to th« lina lanjth, and 

which ara a function of tha crack poaition.  Ma work fro« tha 

Griffith thaory of fractura for atraight cracka. Than, If y 

ia tha crack diaplacoMant, 

d 
ay 

total ) d [intarnal] . 
ayatar.l - S- «laatlc ♦ 5 
anargyj   *{  «nargy j «7 

axtarnal 
load 

anargy k aurfaca anargy i 0 

m 
ia th« condition for «quilibriua for atraiqht cracka. 

Tha varioua tama ara raap«ctivalyt 

L_. - »oV/^y 'alaatic 

«axtarnal - m*9rf* 

«aurfaca - 2y* * tl^ 

(4a) 

(4b) 

(4o) 

o  ia tha appliad •trass, Y ia Young's aodulua» t. ia tha 

avaraga aurfaca anargy. and f(y) ia a pariodic aurfaca anargy 

function which rafiacta tha atoaiic charactar of tha lattica. 

Tha function» f(y) raflacta tha atomicity, laada to lattica 

trapping, and ia diacuaaad in rafaranca (3). 

Claarly, tha aurfaca anargy tarn ia simply proportional 

to tha aurfaca araa awapt out by tha crack. Tha alaatic tans ia 

proportional to tha langth of a crack for a atraight crack. 
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Por th« momant, w« shall almply asauroo the aame form (4a) for 

th« curvad crack too. Th« e::t«rnal work term reflects the 

average strain throughout the sample and if the crack ia con- 

voluted In soma manner, it is only the average position of the 

crack which specifies the average strain.  We shall thus take 

the second term to be a "potential term" rather than a length 

term in (1).  Even though tho elastic energy and external work 

done have the same form in (4) for straight cracka they are 

physically different, because the elastic energy is enhanced 

by a highly convoluted crack line becauee of the larger number 

of atosM with high strain energy around the convoluted crack 

tip. The enternal work is affected only by the average 

crack depth, not its convolution«. There are questions of cut- 

off procedure« for a convoluted line to which we return in later 

paragraphs. Thus, fr&Ji (4) and (1), we have 

V - | /iyVlVI ♦ ^«y ♦ «<y) " JXy» jdx 

X  • wo*/** 

It  /I*y,T • Ci ♦ taf'1)» the differential equation for the 

••ring thap« i« 

XyV" 2tt - fMy) ♦ 2Xy - 0 C6) 

Equation (4) has an immediata solution representinq th« 

str«ight crack which containa uaeful information.  If y" • 0, 

than th« modifiod Oriffith condition b«cam«s 
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Xy =  Yo - Yi sin *|ft| (7) 

where the periodic function £(y) has been assumed to have the 

simple form 

■ *** [i - - ¥] (8) 
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a Is the lattice spacing and Yi IS the amplitude of the surface 

energy variation.  The standard Griffith condition Is obtained 

from (7) by setting y» - 0. 

The solution (7) Is depicted In Fig. 1.  In general, 

there are multiple solutions stretching over a stable region 

of the crystal, In contrast to the standard Griffith solution 

which predicts a single unstable solution.  The Griffith value 

for y is at the midpoint of the stable region.  For different 

values of the stress, the stable region for the crack shifts 

back and forth. 

The length of the stable region is obtained by noting 

that the upper limit of the stable region is where sin 2Try/a»+l 

and the lower limit is where sin |^y ■ -1.  Hence if y+ is the 

maximum stable crack position and y_ is the minimum stable 

crack position, then 

•f • f4 • f. ■ 2>»/Y« <9) 

If we designate the "Griffith depth", y , as that value of y 

given by (7) when Yi • 0, then 

! 



u 
U 
li 

11 

. 

^ - 2YI/YO 
yg 

(10) 

yg - YO/X 

This equation states the important result that for straight 

cracks, 6y is a macroscopic quantity when YI i» not many 

orders of magnitude less than Yc The ratio Yi/Yo depends 

U      drastically upon the size of the cohesive region or core 

width, of the crack, and in the computer caluclations for iron", 

the core width appears atomically narrow.  In this case the 

stable region whould be of the same order of magnitude as the 

crack depth itself. 

Another point of some consequence io immediately 

noticeable from Pig. 1. If a crack is at some stable point 

within 6y, the excess stress to overcome the lattice barriers 

ij      depends upon the starting position within «y. Near the forward 

limit of the region, a very small stress is necessary to over- 

U      come the lattice barriers, and convert the crack into a dynamically 

moving crack, while a maximum stress is necessary to overcome 

the barrier near the rear limit of the stable region. This 

point will be important in the discussion of kinks. 

III.   Kinks 

Within the region, 6y, although the straight crack is 

mechanically trapped by the atomic periodicity of the surface 

energy, the crack can move by the local kink generation due to 

thermal fluctuations. We now try to solve for the saddle point 
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yl\C   '   ttiftÄ, -   xh   *  q 
(13) 

9 - 2(Yo - Xy,) 

energy configuration of a kink on the crack line where the 

kink is in unstable equilibriu« under the applied atreaa.  We 

return to U) and assume that the crack is straight everywhere 

except for a local kink of small excursion.  Hence. 

y - y. * C (11) 

and we keep only linear terns in C(x).  Hence (6) becomes 

ylXC- ♦ 2H - fK) - 2Y» - 2Xy# <12) 

We arbitrarily choose y, on a microscopic scale ao that 

V (C • yo) - f' Id« At the mic^lrt ol  the stable region 

where the Griffith condition is satisfied, the right side is 

sero in (12V.  At other points within the stable region, 

there will ** a "driving term" which will bias the thermal 

fluctuations so that on balance the crack either closes or 

opens. 

In the caae of the sinusoidal aurface term, (12) 

becomes a nonlinear equation, the precise solution of which 

is not worth the trouble to obtain numerically.  We learn 

all that is necessary about the solution by writing the 

equation for 5 << a which will give us an adequate eatimate 

for the width of the kink.  Then (12) becomes 
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II 
For a single kink which crosses over from one lattice 

through to another at g - 0, the two asymptotic solutions are 

« - a e"*'*   x >> t 

(14) 

5 - a(l - ex/A)  x « -4 

where 

u 
(15) 

Me have used the standard Griffith condition in the form 

y_ - Ye/A to write (15).  So long as the crack is in the middle 

of the stable region, and assuming that the crack depth is 

sufficient (see Pig. 1), the first term in (15) is dominant. 

K yo " y_ in (15) then the kink width becomes simply 

a  v w a YI 

ll 
(16) 

which for macroscopic crack depths is very large, and leads 

to extremely large kink energies. 

Equation (16), however is an unphysical solution 

because in it the entire crack depth, yo, contributes to the 

line tension.  Some numbers will show the nature of the 

difficulty,  in (16) if YO/Y» « 10, corresponding to a fairly 

narrow crack core, and if the crack is one micron deep. 

y /aw • 10'M, then t/a * 10*. Thus the distance, y , con- 

tributing to the line tension is an order of magnitude greater 

than the kink width itself. According to St. Venant's princi- 

ple, the strain field of a local disturbance should extend in 
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the medium to about a distance equal to the dimension of the 

strain source itself.  The troublesome term, yo or y r first 

enters the elastic energy term in Eq. (4a), and contributes 

to the line tension of a uniformly straight crack because 

the crack opening displacement contributes significant elastic 

energy density over regions of the crystal at large distances 

from the crack tip.  m a sense, the strain field of a crack 

is "long range", not because of the elastic misfit near the 

crack tip, but because of the long range "misfit" over the 

macroscopic open surface of the crack.  However, when a macro- 

scopically deep crack possesses an atomic kink, the local kink 

strain field must not depend upon the macroscopic crack depth 

as predicted by (16), but must depend only upon the details of 

the local atomic forces. After all, the displacements of the 

atoms in the immediate vicinity of the crack tip depend only 

upon these same atomic force details, and not upon the total 

crack depth, and there is no reason to suppose a kink to behave 

otherwise. 

The line tension approximation must then be subjected 

to a cut-off procedure.  There are several ways to affect this. 

The first is to attempt to set y» - A in (16), but this leads 

to no solution at all.  The second is to return to (4) and set 

yo = R in those terms which appear as coefficients of y' in 

the potential functional, where R is the local radius of 

curvature of the line.  Care must be used in doing so to retain 

(7) as the limit for straight cracks in the subsequent equations 
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This approach leads to highly nonlinear equations, and high 

derivatives from which physically meaningful results are not 

easy to abstract.  A third and more successful technique is 

give up the differential equation for the kink and instead to 

minimize the line energy of a segmented kink as shown in Fig. 2. 

Since the midpoint of the kink is stationery, the 

external work term is constant, and we can write (1) as 

«v -''»[ssh -1] * j ^ -^d- (l7) 

(We have shifted the origin in our use of f (y) from its 

original form, (8), in a trivial manner), i  is the width of 

the kink shown in Fig. 2, and 6 is the angle of the kink. 

From Fig. 2, y ■ x tan 8, a ■ A tan 6. 

öv - duh? (coFT -1]  '  2*2tan 6 (18) 

which has a minimum value at 9 - TT/2, corresponding to a sharp 

or abrupt kink. 

Double Kinks 

The proper procedure for the string model at this stage 

would be to solve for the saddle point configuration for the 

double kink in a properly modified equation, (12), under the 

influence of the driving term.  However, we have just demon- 

strated that the simple minded concept of line tension breaks 

down, and that in fact the kinks are sharp.  In the limit where 

the driving term, g, is zero, the energy E^, to form a sharp 
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doubl« kink is simply the energy to ride over the hump in the 

suface energy given by (8). 

E ko 
2Yia 

71 
(19) 

We assume that i,  the kink length, in general may be a few 

atomic distances instead of strictly one, in view of our 

inability to take account properly of the core effects. 

We remember, however, that this kink activation enercy 

is not unique, and represents only a maximum in a continuous 

spectrum depending upon where the kink is in the stable region. 

From Fig. 1, the height of the barrier decreases linearly to 

zero from the midpoint of the stable region where the Griffith 

condition is exactly satisfied out to the front edge of the 

stable plateau, where the dynamic crack condition becomes 

satisfied. 

IV.    Conclusions 

Our result is that the line tension of a crack line 

depends markedly on the crack shape.  The average line tension 

for extension of a straight crack is large, and the distance, 

yo, appearing in the line tension, (4a), is the total depth 

of the crack.  However, if we wish to bow out the crack line 

over a distance appreciably smaller than the depth of the 

crack, the line tension then decreases sharply through the use 

of St. Venant's principle, so that yo - R where R is the linear 

dimension of the bow out.  In the case of the atomic kink, 

this cheorem leads one to expect an atomically sharp kink, with 
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the details of the force laws on the atoms in the vicinity of 

the crack tip determining the final result.  The kink energy 

is then simply related to the parameter y,, which measures the 

sinusoidal variation in the surface energy as a function of 

crack position. 

We can comment on what light the recent computer calcu- 

lations of Kanninen et tl* throw on these results.  The computer 

calculations apparently qualitatively verify our findings of 

sharp kinks.  To be sure, they are not atomically sharp for 

reasons which are beyond our approximations, and have to do with 

atomicity.  Our result shows that unlike dislocations, the kink 

width should not vary much with f, except of course as f ■> 0, 

the crack line should slowly straighten out. 

Finally, the activation energy for crack mobility 

through the stable region will show a dense uniform spectrum 

with a maximum value given approximately by the energy to form 

two single kinks, and a minimum value of zero. 
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Figure 2.  Kink as straight segments. 
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STATES OF   EASE OP   POLYMERIC  ENTANGLEMENT 

NETWORKS CROSS-LINKED   IN STRAINED  STATES 

John D.   Perry 

Abatract 

An ,xp.ri»ent I. propo.«! to provld. Infor-tlon .bout 

th. n.tur. of 'MtMllWIrt coupling-, • .«•«•>" v.,u. cone.pt 

which 1. wld.ly «PPll«« to lnt«tpr.t »-ch.nlc.l .nd oth.r 

phy.lc.1 proportl« of poly-r. of hl,h -oUcul.r v.l,ht.    A 

..»pi. of .uch . poly«r, vl.u.ll..d « . -»t«'" »' •""'>«1«- 

„.nt loci,  1. —mm» I" .i-Pl. .xt.n.lon .nd .ubj«t*l to 

ch«.lc.l cro..-linKln„  upon r.l.... It contrnct. .nd .pprcch.. 

. flr.t .t.t. of .... in which th. fotc. .x«rt«» by th. 

,ff.ctlv. nntworK. of .nt.n,lo».nt loci .nd of cro..-llnX. .r. 

taUM*.    " •«»• 0« th« •nt.r.gl«»"» MMla untr.pp«! by th. 

OMM-tUM .nd c.n r.ntt.n,., th. ..mpl. th.n »ot. .lowly .x- 

t,nd. .,.ln .nd .ppro.ch.. . «cond .t.t. of .....    Th. dl«n.lon. 

in th... .t.t.. h.v. b..n mMMa nu-crlc.lly for v.rlou. c  

b..«l on .xl.tln, th.orl.. for th. r.l.t«. probl«. for ch-lcl 

cro..-llnh. in two .ucc.lv. .t.,...  Experl-nt.! —■ ' 

of «.ulllbrlu» dl«.n.lon 11 " th. Kin.tlc. of dl..n.lon.. 

ch.n,., .nd ■to. ch.n,e. In dlwn.lon. on .ub.«,u.nt .-.mn. In 

.olv.nt, c.n cl.rlfy th. n.tur. of «.Wn,!—nt couplln, .nd 

trapping. 
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STATES OP BASE OP POLYMERIC ENTANGLOIKNT 

NETWORKS CROSS-LINKED IN STRAINED STATES 

John D. Forry 

Z.     Introduction 

Many mechanical and certain othar phyaical propartlas 

of uncrosa-linked polymors of high molecular weight have been 

interpreted in terna of rather strong coupling between molecule« 

at widely separated points, commonly termed entanglements.1  It 

is fairly clear that the coupling arises from topological re- 

strictions! its effects on viscosity, steady-state compliance, 

and other mechanical properties have been adumbrated in some 

aetail,'*1 and the average number of moles of effective en- 

tanglement junctions per unit volume, c, can be roughly estimated 

from various theological measurementn.k Qualitatively, there 

is a range of time scale within which portions of a molecule 

between dtanglament loci rearrange their configurations fre- 

quently but long-range configurational changes are prevented by 

the extreme slowness of entanglement slippage.  Within this 

time scale, the mechatiical properties resemble those of a 

cross-linked network.  However, the entangleiM>nt concept is 

somewhat vague because there can be no soecific loci on a 

molecule of uniform chenical composition} the precise nature 

of entanglement coupling remains speculative. 

It should be possible to obtain further information 

by a type of exporimont which is a modification of a procedure 
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tnvotvliw croM-imm»» In «tr«!!»«« »l.t«». 

„. rr-^.f..^ at Pre, ■ «.-.i-nt »i Mti^MMJ l"""t' 
A potywr ot .utflclwtlr h»9h »ol»»»«" -•l»ht  '•0 th,t 

.„..„,1«.« .Upw. i. -»«»-1— -»»"» * «»»v"1«"1 »•*>"»"» 
tl« IMUi I. -»on»d l« .I-Pl. «t.n.lo« «ith . .tr.tch »tlo 

»o.    Ch.le.l cro..-Unk. «. i»irod»e»i in thl. fl««» «"'-"«• 

•MMI U»» M» —•««• l8 ''"cl-*«, «^ •Uo,~d t0 "'""' 
.till -Ithl» . ti- .«U .ueh th.t ih.r. 1. «o «*.»,».-.« 

.UPPM.. to IM Urs^a^USa'-    ** corr..po«-. to . 

■MM of •in— .«.in .n.r,y in «hlch, v.Ut.tlv.ly. th. 

orl,ln.l .nl«,lo«.n. ..t-orK .nd th. cl«-lc.. cro..-um. n.t«orl. 

•r. pullln« in oppo.lt. dtr^tlon.. 
At lon,.r t««,  .o- ot th. .«t.n,l«-nt. -.y .UP .- 

MMMMt to .no« «.-ptlo« of . r.ndo. dl.trlbutlon of 

confi,ur.tlon. tor c.rt.ln portion, of th. n.t-orh.    C.rt.ln 

proportl.. of li,htly mm» U** "t-orh. h.v. b^n .nt.rpr.t- 

l„ t.r» of . dlchoto»y b.t-..n .nt.iw»»««. »hlch .r. UiEESä 

bot...« c.o..-llnh. .nd onnnot r.«r.n,.. .nd othor. on d.n,lin, 

„ructur.. -hlch .r. »ntrSBBJä'i th. proportion of tr.pp«« "- 

t.„,.«.nt. incr ith th. d.,r.. of ch-ie.l cro..-Unhin,. 

It   .n.r.ppod .nt.n,l».nt. e.n .ub.^.ntly r..rr.n,.,  th. 

.«VI. will .ul..«iu.ntly ch.n,. It. dn-n.lon. .»o-Iy m th. 

oppo.lt. direction to * .~-.%~< .t.t« of ....- 
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HI.   Thaorv for fift 8ff of Eaf 

Lfluilibriuii. Th« theory for th« related experiment 

in -hich one ttATts with SOM che-lcel crott-llnk« Intioduced 

in the ieotropic itete end adds «ore croit-llnki in e »trained 

ifeSfet haa b^n developed by aeveral authora,*'*»' on the baala 

of the »treaa-atraln relatlona of neo-Hookean elaatlclty. I.e., 

retractive force In ti«ple eictenalon proportional to l - 1/^* 

«h«« i U the relative length In the direction of atretch.  If 

*• tubatltute entangleiMnt loci for flrat-atage croaa-llnka, 

aaaunin« that all llnkagea are tetrafunctional and looae enda 

can be neglected, the relative length i. In the flrat atate of 

•«•• la given by 

.  f1 # V^ ]l/t a) 

where v ia the eolea croaa-llnka per cc.   Introduced at a fixed 

atretch ratio ä0 and i ia the molea of entanglement loci per cc. 

tn figure I. Xs la plotted agalnat i%  for aeveral different 

veiuee of the ratio v^c. The aeparatlona of the curvea from 

the daahed line with alope of unity repreaent the amounta of 

retraction from the Initial atretched atate to the atate of eaae. 

The neo-Hookean atreaa-atraln rolation doea not hold 

atrlctly In almple extenalon for X > 1.2. Calculationa have 

been made for the more general Mooney-Rlvlin relation which 

introducea another empirical conatant«. and for non-Gaussian 

atranda with limited extenaibility10. but they are very compli- 1 
] 
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cated and these refinements are probably not necessary for 

present purposes.  Comparison of experimental data with Figure 1 

should provide a new method of determining the entanglement 

density c and also of looking at its possible dependence on X. 

If Young's modulus (or the shear modulus) is now 

measured in small deformations from the state of ease, it is .. 

.. 

il 

predicted to differ from the original modulus E by the factor 5 

VEo ■ (V - v'^v'/v - w       ^ 
In Figure 2,  this ratio is plotted against ^ /e for various 

values of X .  For small extensions, E
a/

F
0  approaches 1 + vc/e 

(additivity of entanglements and cross-links^, but at higher 

extensions it exceeds this value.  It i lould be noted that the 

moduli E and E refer to a time scale within which there is 
s     o 

no entanglement slippage ("plateau" modulus), and may be 

difficult to specify experimentally, but in principle their 

ratio affords an alternative method for determining e and its 

possible dependence on X. 

Kinetics.  The approach to the first state of ease is 

essentially a creep recovery process for the entanglement 

network combined with a creep process for the cross-link net- 

work, wi.th time-dependent stresses equal and opposite.  In 

principle, its course should be predictable from linear visco- 

elasticity data; comparison with experiment may provide further 

clues to the nature of the entanglement coupling.  For large 

deformations, the problem is considerably more complicated but 
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may be approached with a suitable constitutive equation11'". 

IV.    Theory for Second State of Ease 

Equilibrium.  Relaxation of untrapped entanglements 

corresponds, in the theory for two successive stages of cress- 

links, to removal of a portion of the first-stage cross-links. 

Flory* has calculated the final state of ease in this situation; 

with suitable substitutions, the relative length X  can be 

obtained from equation 1 by replacing ^ and c with the following 

effective values: 

er - T#e *  ♦vc (3) 

v  - v - ♦v (4) cr   c    c l ' 

where ♦ - ^ [l ♦ ^^ In CW,)j[l ♦ ^- tn (l-ft))      <5) 

and $2 - v_/(e-»-v ), ♦t ■ 1-TÄ, where f« is the fraction of 

entanglements that are trapped and cannot relax.  In Pigure 3, 

* is plotted against <t>?   for several values of i\.     These 

parameters are not independently v nable, since increased 

cross-linking increases ta and diminishes «? to a degree which 

depends also on the initial molecular length1'.  Two repre- 

sentative cases may be chosen for illustration, suitable for 

1,2-polybutadiene of molecular weight 1 ■ 101, which has about 

30 entanglements per molecule: 

v /e -!,♦?- 0.075, *, - 0.50, ♦ - 0.06, (v /t*  • 1.03J 
c c  r 

v /e - 0.2, ♦! - 0.42, ♦, - 0.17, ♦ - 0.24, (v /c), - 0.26H c c  r 
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In Figure 4, X     and \      are compared for these two cases as 

functions of Ao.  Evidently, the change froir first to second 

state of ease is relatively   11, but if it can be measured 

It can tost the hypothesis of untrapped entanglements which 

h. s been evoked to explain very slow relaxation mechanisms in 

lightly cross-linked networks'^ ,',. 

Mneti.cs.  The change from first to second state of 

ease is expected to be quite slow if the relaxing entangle- 

ments are on dangling branched structures, and the rate should 

decrease markedly with decreasing v /t; thus, the larger the 

effect, the more slowly it will be accomplished.  Even quali- 

tative observations should clarify the roles of trapped and 

untrapped entanglements.  In particular, it has been assumed,,'l^ 

that a trapped entanglement contributes as much to the strain 

entropy change, and hence to stress, as a chemical cross-link 

(or differs by a constant effectiveness factor).  The possibility 

that its effectiveness depends on both time and magnitude of 

deformation should be probed.  It has been suggested1& that the 

effectiveness of trapped entanglements should decrease with 

increasing X. 

V.     Swc111ng 

Further information may be obtained from swelling the 

network in solvent after it has reached its first state of 

ease.  (This experiment is primarily of interest for networks 

with sufficicr.wly large vc/. that there is no further change 

to a second state of ease.)  If the effectiveness of trapped 
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-UVUmnU is  unaffected by ,„elU„g, the dlmen,icn,l changes 

should be isotropic.  ,1« network, with two states of chemica! 

cross-Unking, slight anisotropies in swelling have been ob- 

served' and attributed to deviations iron, neo-Hooke.n behavior, 

but they are ..Inor.,  „ 8w.llln9 aiminiBhea  the effeotlveness 

of entanglements, the increase in length In the stretch direction 

should be greater than the cube root of the volume ratio, and 

from it a new value of effective entanglement density can be 

calculated by a modification of Equation 1. 
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Figure 1.  Relative length in first state of ease for simple 
extension plotted against relative length Xo at 
which cross-links are introduced, for various values 
of vcA. 
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Figure 2. Ratio of Young's modulus In first state of ease to 
plateau modulus before cross-linking, plotted 
against v /c for various values of Xo. 
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Figur« 4.     Comparison of  firtt and  second  states of ease for 
two illustrative clioices of  V^G,   $2,   and ♦?   (see 
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DIFFUSION THROUGH COMPOSITE 

POLYMER SYSTEMS 

John D. Ferry 

Abstract 

The factors influencing the diffusion coefficient 

for a small molecule through a composite structure of 

permeable (polymeric) and impermeable domains are discussed. 

Calculations of the geometrical structure factor based on 

various models with a continuous permeable phase are re- 

viewed; they are similar enough so that deviations of 

experimental data therefrom may be interpreted in terms of 

other features such as modification of the local molecular 

mobility in the continuous phase, failure of contact between 

phases, and gross alterations of morphology. 

frecedlng page blank 
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DIPPUSION THROUGH COMPOSITE 
POLYMER SYSTEMS 

John D. Ferry 

I« Introduction 

R.lnforc««„t of rubb.ry poly-r, by incorpor.tlon of 
.olid p«tlcl.. h« IM, b..,, „ %M  ,.„„. of rubb#r 

MM!.», mt in r.c.„t j..,. co^o.^. p,,^, ^^    ^ 

which two or more poly«« oomponont. with v.ry dlff.ront 

~ch«,lc.l proportl.. .r. bl««!«, ln v.rlou. ^ ,,„, ^^ 

v.ry important.    Th. r.l.tlon of do«.ln .tructur. .nd oth.r 

..P.ct. of «orpholo« to phy.lc.l propertl.. 1. . prob,«, ot 

hlflh priority In th« polynor Indu.try. 

Sine. th. dlff„.lon of .„u ,„,.!,„ mmtim   mUmUt 

w.l,ht of th. ord.r of 200,  throu,h poly».r .y.t«. c.n b. ...Uy 

■MMNi by u.. of r.dlo.ctlv.ly t.„«, p.n.tr.nt. „ tr,c, 

amount.-,  it 1. of lnt.r,.t to .„„^ ^ „„^^ ef 

obt.lnln, information from thl. typ. of .xp.rlm.nt.  ,n . hono. 

,.n.ou. rubbory polym.r, th. dlffu.lon co.fficl.nt of . p.„.- 

trant auch a. n-h.xad.cana r.fl.ct. th. loc.l mobility of 

polymar a^manta.  i„ „  rubb.r ttu- with ^^^^  of ^^ 

black or calcium carbonata, or a block copolymar with dom.l„. 

of »la.ay poly.tren. and rubbary polybutadl.n., th. h.rd or 

,la..y domain, can be con.ld.r.d imp.rm.aLle to .uch a penetrant 

The ratio 0/Do of the dlffu.lon coefflclenta throu,h the com- 

po.lt. .y.t«n and throu,h th. unmodlfl«, rubbery polymer will 
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dopend on (I) the „«o-trlc.l effect, of inclu.ion of im- 

ptrnttU* do^ln., (2) po..ibl. «odlflcatlon of th« loc.l 

•ol.cul.r mobility of the rubbery polymer in the vicinity of 

the impermeeble domein., (3) interfece anomelie., e.peci.Uy 

failure of contact or existence of voids. 

IX.    G«oii>etrical Effect« of T^rm^bl« Domain! 

Many theoretical treatment« of auapenaiona of im- 

parmeable particle, in an impermeable medium have been reviewed 

by Barrel. Wo choo.e a number which are of po.aible intere.t 

and compare the dependence of D/D0 on the volume fraction of 

the impermeable component, V|. 

(1) Cubical particle, in I «implc cubic array": 

D/D o 
l-v,«/" 

D/D0 

(2) Spherical particle, in a .imple cubic array 

(de Vrie.Mt 

2-2V!   ♦   L|ldilil!£!   ,   ■ -  1.31 

(3) Spherical particle, in a body-centered cubic 

array': .amc a. (2> with a - 0.129 

(4) Sphorical particle, in a facc-centcrod cubic 

arrays: .am« a. (2) with u - 0.075 

(5) taonqatod ellipsoidal particles, oms-third 

oriented parallel to each principal direction (Fayleigh\ 

Darrer"): 
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domain inLorface» thore may be a mixture of ••gmentB'.  In a 

•tructur« with continuous B and diacontinuou« S domainu, dif- 

fusion may rsvsal that the molecular mobility is lower in 

such interfaces than in the B phase.  Interfacial mixing would 

bo presumably enhanced by progressive shortening of the block 

lengths, down to a limit of random copolymor'0.  If the diffusion 

constant in the random copolymer is known as a function of S 

content, it may be possible to make deductions concerning the 

composition and extent of the interfacial zone.  (The micro- 

structure of the polybutadiene blocks must also be known, since 

D is influenced by this variable as well.) 

IV.    Interface Anomalies 

If adhesion between a polymer and filler particles is 

poor, voids may exist.  Thesa apparently enhance the permeability 

to small gas molecules", but their effect with the type of 

penetrant discussed here is uncertain.  When subjected to large 

deformations, filled rubbers may experience substantial detach- 

ment of the particles from the matrix (Mullins effect11).  The 

effect of this phenomenon on diffusion might be explored. 

V.     Changes in Morphology 

In block copolymers, the connectivities of the two 

phases depend greatly upon the nature of the solvent from 

which a solid structure is deposited by evaporation12, and 

upon subsequent annealing11. With increasing S content in 

SBS copolymers, the S domains may join through tapered leg 

structures"* without at first interrupting the connectivity 
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of the B domains. When such materials are subjected to large 

deformations, gross alterations in morphology occur12. These 

features can also be investigated by diffusion measurements. 
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Ratio of diffusion coefficients in composite system 
and in the permeable matrix, plotted against volume 
fraction of impermeable inclusions, numbered to 
correspond to the 6 equations in the text. 
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SOME PROBLEMS IN BULK POLYMERIC SYSTEMS 

H. R.-1S8 

Abstract 

A condensed »uwMry of »owe of the «tetittlcal techniques 

used in the study of polymer chain configurations Is presented. 

In connection with the theory of polymers containing 

rings, a new variation principle Is developed which can be used 

in connection with associated confIguratlcnal problems.  This 

variation principle leads to a "self-consistent field" solution 

of the configuratlonal problem.  The theory of rubber elasticity 

Is discussed, and the possibility of applying the variation 

principle to this phenomenon considered. 

Glassy polymers and the glass transition are discussed, 

and some ideas connecting the glass transition and what appears 

to hv  a related phenomenon involving ■ fluid-solid transition 

observed In a syatem of hare» spheres are conolderod.  The hard 

sphere transition Is really a alass-avolding transition for 

which we have coined the term "hyalo-phobic transition". 

Block copolymers and their participation In the 

formation of heterophai»c polymer bulk polymers are also dis- 
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cussed. It is suggested that the fairly well developed field 

of the statistical thermodynamics of curved surfaces might be 

of use in connection with the heterophase transition. 

Inhomogeneous bulk polymers resulting from the formation 

of inhomogeneous networks are discussed.  Some corrections arc 

applied to the "gel ball" theory of Labana, Newman, and Chompff. 

Polymer crystals are also treated. 

Finally, frictional and dynamical effects in hvlk 

polymers and polymer solutions are considered.  Tho Roussn model 

is outlined and possible future directions arc indicated. 

-I'iO- 



. 

SOME PROBLEMS IN BULK POLYMERIC SYSTEMS 

II. Rciss 

I.     Introduction 

Polymers have provided useful materials of application 

for many years.  The most important have usually involved the 

polymer in the "bulk" rather than the "free molecular" state, 

i.e., in the glassy, rubbery, or even in the crystalline state. 

In spite of the technological importance of the bulk state, 

most of the "science" of polymers has concerned the free or 

quasi-free molecular state, e.g., polymers in solution.  The 

reasons for this are clear—the molecular state is more easily 

amenable to quantitative theoretical analysis.* 

In spite of the lesser technolocjical importance of the 

molecular state, research in this area has been important for 

several reasons, among which is the fact that polymers are best 

characterized in solution.  Measurements of molecular weight, 

polymer configuration, reactivity, and relaxation mechanisms are 

more easily performed in solution.  After having been character- 

ized in this manner, the polymers can then be converted into 

various bulk conditions whose properties are then related to the 

known molecular features.  Of course, certain features have no 

independent existence outside of the bulk state and it is in 

•A comprehensive and excellent description of the theory of 
polymers in solution can be found in II. Yamakawa, T/ic MoJiitt 
T'neofiy o*   Putymci SoCutiom   (Harper and Row, New York, 1971). 
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these areas that much new research needs to be done. 

Another bequest of solution research is the set of 

methodologies connected with the molecular theory of polymers. 

These methods can be appropriated and extended to the treatment 

of polymers in bulk.  Progress in this direction has already 

been made. 

Unlike other fields of materials science, the polymer 

area has remained almost the exclusive property of chemists and 

chemical engineers.  This point is emphasized by the fact that 

MU»A itself has supported very little work in polymers.  On the 

other hand, there are many points of possible contact with physi- 

cists, especially solid state physicists.  This is even more true 

for polymers in bulk.  One of the goals of this somewhat informal 

(and perhaps disorganized) discussion of certain aspects of the 

field will be to acquaint the physicist with a few problems where 

his help would be both appreciated and effective. 

The following text contains several streams of ideas. 

These include (1) a somewhat qualitative, and at best semi- 

quantitative, description of some conventional well established 

ideas in polymer science; (2) some research ideas — carried 

through initial steps of activation — which have emerged from 

a month of summer study; (3) designation of those ideas and 

researches which may be of interest to physicists.  These 

categories will not always be clearly separated, but appropriate 

comments will be made wherever clarification seems necessary. 
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II,    The Configuration of Polymer Molecules 

The classic approach to the theory of polymer molecule 

configuration has involved representation of the molecule by 

a number, n, of freely orienting segments where n need not be 

identical with P, the degree of polymori zation which donotor. the 

number of monomer groups bound together to form the polymor. 

With this model the allowable configurations are in one to one 

correspondence with the paths of a random flight in which the 

individual steps are all of length a,  a being the length of a 

segment. 

It follows1 that the end to end distance, R, of the 

polymer has the distribution 

where P(Ä) dS is the probability that the end to end distance 

lies in dR and C ia a normalizing constant.  For large n it 

proves sufficient to approximate P(S) by the Gaussian prefactor 

in eq. (1), and after normalization, 

P(R) = f  3  1 2Trna2J 

3R 2 
V2 " JKEJ 

e 'na . (2) 

For this model the mean square end to end distance proves to be 

<R?>  - na? (3) 

and is linear in the number of segments, n. 
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Another configuratlonal quantity more closely related 

to experimental measurement {for example, to light scattering 

is the so-called radius of gyration, a, which is the root 

mean square distance of a polymer segment Uveragod over all 

segments) from the center of mass of the molecule.  The mean 

square radius of gyration is obtained by averaging the square 

of the radius of gyration over all configurations.  Simple 

analytical expressions for the distribution of the radii of 

gyration are not available.  However, it can be shown that 

the distribution is approximately gaussian.'  A good apf  Aimate 

closed expression for P(S), where S is the radius of gyration, 

is due to Flory and Pisk" and has the form 

6S2 

The quantity m is usually set equal to 3. 

Although a simple analytical expression for P(S) is not 

available, formulas for the various moments of S can be derived 

with relative ease.  For example, for the molecule with freely 

orienting segments, the mean square radius of gyration is 

<S2> - | na2 - | <R,>       , (5) 

so that the mean square raoius of gyration is 1/6 the mean 

square end to end distance. 

The configurational statistics of polymer molecules 

can be developed expeditiously through the application of 
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Markoff1a method*.  This method employs the Fourier representation 

of the three-dimonsional delta function and may be applied to the 

distribution of a sum of vectors 

» • { »i   • (6, 

where the || are vector functions of the individual bond vectors. 

Thus, ♦1(ri) is a function of |. where r. is the vector repre- 

senting the ith segment of the polymer.  If r. itself has a 

distribution ^(r^ then it may be shown that P($), such that 

P(J)dJ is the probability that I lies in d$, is given by 

^ ■ j*rn 1K(*, e'ihl ^ (7) 

K(p) -  | T^r.) e   i d^     , (8) 

where, the Fourier transform of P(|), K(p), is given by 

i-1 

where it will be recalled that $. is a function of r..  Tn 

particular $i can be f| so that I becomes the end to end 

distance. 

Markoff's method has been extend<d by Wang and Uhlenbeck' 

to multivariaue distribution.! in the particular case that 

3ri2 

i.e., to the case in which each bond or segment is qaussian 

distributed.  This method is applicable to sets of vectors I 

  

(9) 

k 
such that 

-355- 



Ik - I  tki  ri , (10) 

where the (j). . are constants, i.e., to vectors which are linear 

combinations of the bond or segment vectors.  If there arc s 

vectors in the set and the set is denoted by {(f) ) then the simul- 

taneous or multivariate distribution of this set is given by 

P{i|g}) Ti<a2> 

3s/2        -[i<a*>\C\]   I     X^K'h 
—^-T  e K-i x, i 
|g|3/2 

In this formula C is the matrix with k£ element 

m a? 
Ck£ = .^ ^kj hi  TZk > (12) 

where <a2> is the mean square bond length 

i  n 

<a2> " K ^ ai n i-l J 
(13) 

V 
i k£ 

Furthermore, |g| is tho determinant of C and C  is the co- 

factor of the element Cj- in this determinant. 

Eq. (11) has many uses.  It can be used expeditiously 

for the evaluation of the distribution of the radius of gyration 

since if I. is the distance of a segment from the molecular 

center of mass the radius of gyration, S, is given by 

S2 - i I  S'      . (14) 
n j-1  3 

It may be shown7 that 

(15) 
m     t 

. 
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II 
U       with 

♦ui " "U"1* H7T- 1    ' (16) 

where j (j-i) is the unit step function.  Thus the §. are of 

the form exhibited in eq. (10).  Because of this, both S?  and 

<S2>, (where the brackets indicate configurational averaging 

so that <S2> is the mean square radius of gyration) can be 

evaluated using eq. (11). 

The bond distribution, eq. (9) is not a serious re- 

striction since it may be shown8 that as long as gaussian 

statistics are applicable to the overall chain configuration 

the use of 

6(r -  a) , (17) 

or 

[idkj 3]VV3rV2a2       , (18) 

where a2 ■ a*a, lead to the same formulas. 

It can be shown9 that the effective freely orienting 

segment model is an accurate representation of any chain in 

which the correlation between successive actual segments extends 

only over a finite number of such segments.  Under this circum- 

stance, one can always find an effective segment length so that 

the freely orienting model is applicable.  On the other hnnd, by 

its very naturo, such a model conceals most of the effects which 

are specific to the chemical structure of the particular polymer 
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under consideration.  Furthermore, the actual correlation between 

successive segments involves energetic effects and so one cannot 

properly account for the thermodynamics of chain molecules with- 

out its explicit consideration.  For example, the freely orienting 

molecule involves entropy only and on the average adopts a coiled 

form with a short end to end distance because so many more con- 

figurations are available to it in that state.  In fact, the 

elastic modulus of the molecule reflects these entropy require- 

ments, rather than being rooted in potential energy.  The mole- 

cule behaves like an entropy spring1 

Recently, considerable work has been done, especially 

by Flory10, in an effort to treat chain molecules on an actual 

segment basis.  The technique involves introduction of the 

actual potentials which determine the relative orientations of 

successive segments.  The problem is reducible to a form which 

is an extension of the Ising model of the one-dimensional 

ferromagnet.  Averages involving the configurations of the 

polymer are obtained in much the same way that the average 

magnetization is obtained in the case of the ferromagnet.  The 

"matrix method" for the treatment of the ferromagnet, first 

introduced by Kramers and Wannier can be used very expeditiously 

in the present case. 

None of the foregoing methods is capable of dealing with 

the so-called "excluded volume" problem.  This problem, of 

central importance to many aspects of polymer behavior, may bo 

-358- 



., 

. 

. 

described as follows.  The freely-orienting segment model 

possesses statistics identical with those of the problem of 

random flights.  However, the pith of a given random flight 

may cross itself any number of times.  In contrast, with a real 

polymer, since two segments cannot simultaneously occupy the 

same position in space, a configuration corresponding to such 

a "crossing path" must be excluded.  At first sight this .'ffoct 

may seem negligible since the polymer configurations are known 

to be quite open, and therefore the number of paths excludtul 

quite small.  However, the polymer molecule is very long and 

it turns out that the chance of getting at least one crossing 

in such a long path is apprerr able.  Since even one crossing 

is grounds for exclusion, the number of excluded paths becomes 

in fact quite large, and both the mean square end to end dis- 

tance and radius of gyration may depart appreciably from the 

value? predicted by the theory of random flights. 

Many authors have attempted to treat the excluded voluim- 

effect.  Early treatments which did not account for correlations 

extending over the entire length of the cha\n succeeded only in 

deducing that, for very long chains, the moan square end to end 

distance will still be proportional to the number of segments. 

The most reliable technique for examining the excluded 

volume problem is founded on the canonical distribution of 

configuration given by statistical mechanics.  Thus, ii R. 

represents the location of the ith segment, a potential is 
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introduced and denoted by 

(19) 

Wo " ^ Uo ^i.w1 

the sum on the r^ght including interaction» between a given 

segment and its successor only.  The probability of chain con- 

figuration is tlu-n «jivrn by 

in which Z is the configurational partition function. 

Z - f expi- j- IW0*W1) dCl^ni) 

(20) 

(21) 

(22) 

-W /kT .     ■     . x 
1^) -  IT  Ti(ri) The quantity e      - Z0P0 ^'   : '^ 

(23) 

W(iRn)) - I "(R^) 

where the sum is over all ij pair, of segments and ft., ir. the 

distance between the ith and jth segments.  (Rnl stands for 

the set of IV  Whe,. the molecule is in solution this potent.al 

U actually a potential of "mean force" and therefore is itself 

a free energy, subsuming various solvent effect«.  The pair- 

wise additivity indicated in eg. (19) is then only valid when 

the segment density is low (a condition approximated by the 

open structures of most polymers).  The potential which ties 

the segments into a sequential chain is not included in eg. (19) 

This can be written as 
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wh«r« 2 i« the configurational partition function with W 
o -w /kT 

»upressed, and thua a 0   ia proportional to P0 the proba- 

bility of configuration for the freely orienting chain. 

Approximation» to configurational atatistics including 

the excluded volume effect have been derived in a number of ways, 

beginning with eq. (21).  One of the earliest approaches11 (and 

■till one of the roost successful) is due to Flory who wrote 

eq. (21) in the form 

P(S) .iP0(S) e-
V(S>/kT    , W 

where S ia the radius of gyration.  Actually, cq. (24) reprc- 

•ents a partial integration of eq. (21) over all configurations 

(JL) consistent with a given S.  Of course Z is now given by 

Z-|PO(S) e-V(S)/kTdS    . (25) 

For the freely orienting chain function. P0, tho Gaussian form 

v-■ i^r'"3s'/2<s,>o 4"s' 
ia assumed.  The basis of the Flory theory is then the assumption 

that P(S) as well as P0(S) is of a Gaussian form with parameters 

different from those of P„(S).  With this assumption V(S), which 

is really the free energy of a polymer constrained to have the 

radius of gyration S, can be computed in terms of the oarameters 

of this new Gaussian distribution.  Then, in effect, the free 

energy over all configurations is minimized by finding the 

maximum of Z,  given by eq. (25), with respect to those parameters 
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This extremalization fixe« the new parameturs, and therefore 

P(S).  Flory's method, involving as It does« a variation 

principle on the free energy is really an example of the self- 

consistent field method discussed more thoroughly in the next 

section.  The result predicts a general increase of th» a-rage 

polymer dimension, and a mean square radiu.; of gyration, or mean 

square end to end distance, going as 

<.R2>  or  <Si^ u n*/', n • •    . <27J 

Thus the ratio of mean square radius of gyration, with orcluded 

volume, to that without excluded volume, should go as n%'%t 

a very serious departure as n • •". 

Other approaches", following Flory have included tho 

application of perturbation methods.  Several such approaches 

are analogs of the Ursell-Mayer "cluste.- theory" approach to 

the theory of imperfect gases.  These theories, beginning with 

the canonical ensemble, enieavor to expand PM^») in a power 

series in the degree of polymerization P.  All of them expose 

even in their lowest order terms, the true many body aspect of 

the problem and the fact that <R'>/n increases with n. 

Numerical computations of nonintorsrctinq walks on 

lattices have also been perforwed using computers'1.  For three- 

dimensional lattices (iirrespective of type) eq. (27) seems to 

be indicated as n ♦ -.  Thus the ratio n1/' mentioned above 

seems to be connected to the dimensionality of the walk rat or 

than to the specific nature of IfHly))* 
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The most modern theories applicable at n - - arc of 

the «elf conaittent field variety mentioned above.  Since this 

is in an area currently subject to vigorous research and since 

it also represents an especially appropriate point of contact 

for physicists, we discuss it in «ore detail in ths following 

section.  Here we merely note that the results of such calci- 

lations also yield eq. (27) so that the validity of that result 

receives further support. 

As a final topic, in this section, we discuss problems 

which «rise with polymers which are branched or which may con- 

tain rings.  Branched polymers are usually classifiable not 

only by their degrees of polymerisation, but also by the number 

of branch points, the functionalities (number of chains emanating 

from a gi-'in branch point) of the branch points, the distribution 

of chain lengths between branch points, and, in general, the 

connectivity of the network.  Kor branched or ring-containing 

polymers it is obvious that the mean square end to end distance 

has little meaning, and that we must concentrate on the radius 

of gyration. 

Usually interest centers on ■ quantity 

g - <8,>b/<S
,>l 

(28) 

which is the ratio of the mean square radius of the branched 

molecule to that of a linear chain possessing the same number, 

n; of segments.  The quantity, g, can be calculated for branched 

molecules (containing no rings) in the special cases in which 
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either (I) ell chain» between branches have the same length, or 

(2) chain lengths between branches are distributed completely 

at random.  In the first case (uniform distribution) if there 

are m branch units of functionality, f, and p subch.iins. 

9   p*   P 
i£zi ♦ 1  (f-ir m(m;-l)    . (29» 
P2    P1 

For the second case (random distribution) 

^•pipMiip^i 'p'*"«'-"'      • <J0, 

where 

lim   ..-  ,  ii m}1   (fm-m-v)! (m-2)l ,,,.11^-1 
h(f,m) - J(f-l)- m(m-l)  [  fa-m) I <m-u-lM nf ^ 

v«l 

(fv-2v*f)vl    . <il) 

For molecules with rings g is much more difficult to compute 

and we make some suggestion» in this respect in the next section. 

HI.    Self Consistent Field Approaches to Excluded Volume 

and Molecules with Rings; Some New Research Ideas 

The self-consistent field approach to polymer con- 

figuration cm be derivi'i from a variation prlncipl«' not unlike 

the metlHKl employed in «Me derivation of the llartreo-Foek 

(>(|u.itlonH in .|iiantum m.-ch.micB.  Ilowev.r, since entropy contri- 

butions must be accounted for in the polymer eise the variati on 

principle Involves findiny an extremum of the free energy, 

instead of, as in the quantum mechanical case, the matrix element 
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of the Hamiltonian.  It i« in just thia area where the method- 

ologiea of the field theorist and solid state physicist should 

find application and indeed one of the earliest practitioners, 

8. F. Edwards, is amon-j other things a field theorist. 

Paradoxically. Udwards did not« however, derive his solf- 

consistent field from a variation principle. 

To understand this variation principle, suppose that 

the probability of finding the system in the ith quantum state 

is P..  Then the entropy of the system is 

8 - -kT Pl In P1   , (32) 

where the sum is over all quantum states accessible to the 

system.  If E. is the energy of the ith quantum state, then 

the internal energy of the system is 

E " i PiEi   ' ^^ 

and since the Helmholtz free energy is A ■ E - TS, we have 

A - I(PiEi ♦ kT Pi in Pi) (34) 

If we now vary the P. so as to minimize A subject to no con- 

Atraints other than those which maintain the E, spectrum fixed, 

and the requirement, 

i'Pi s 1       # (35) 

we find 
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-Ej/kT 

e  ^ 
5 

which is the usual distribution in the canonical cnsumMf. 

Now it is well known that other nnutsmblua and uthfi 

expressions for P. can bo generated by addinq .idditional ron- 

straints to the system.  For example, the qrand ensemble is 

obtained (in the case of open systems) when the chemical 

potential of a transferable species is fixed.  In the case of 

a polymer molecule the constant force ensemble is obtained when 

the molecule is subjected to a constant tensile force. 

Even more general constraints can be imposed.  For 

example, in eq. (21) whore the configuration <&„) may be 

thought of as corresponding to one of the quantum states with 

-R.,) replacing i, so that P((R )) takes the place of p. we 
N N 1 

may   insist   the  WHRjJ)   be  restricted  to  the   form 

W(iÄNl)   -   )   v^R^ (37) 

r.itluT than h.ivt« the far more complicated form given by 

eq. (19).  This would correspond to restricting P((KN)) to 

the form 

PC^)) - ~  n ^i(ri)(>i (Ä.)        , (38) 

ii.   not to be confused with |. appearing in eq. 16) 
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where  now 

(39) Z  -       I   Ti(liHi(i&)   cURjgl 

Thus,  0-
wn,*N)J/kT    is  now "constraint d*   to IK?  roprosontod  hy 

i   .'•   in.),   a pr»Hluct of   one acgim at distribution  fumtmn:.. 
I 
This restriction is reminiscent of the one election wav.- 

function appeanntj m the llartrce-Fock method.  Ihe functional 

forms of the ♦, or v. can bv  Uotcrminod by roinimizinq A in 

oq. (34) subject to constant spectrum Ei and the constraint 

that P. is the product it ♦..  The function v. dotorminod in this 

manner is the "self consistent" potential and qivos rise to the 

"self consistent" field. 

To bo more precise, for the polymer case Reiss1 

replaced oq. (34) by 

A . flW0((RwJ) * WHRj^H PliRj,)) diRN. 

♦ kT JP(%' in 9ilK))   d^N,      ' (40) 

where A is now just the confiqurational free enerqy and Wo ♦ W 

is the exact confiqurational energy qiven by oqs. (19) and (20). 

However P((iL I) is the "constrained" distribution function qiven 

by eq. (38).  When the variation is performed, it turns out 

vv = JL ju(,v ^^ii^i^^j 
where the sum is over all segments j except the ith, and 

(41) 
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IMR,i,Ri)   I«  the corvlit ion.il   probabilUy  that   the  i   and  j   sog- 

roeats are separated by   ilw vector  distance  'J      when   it is  known 

that   the   ith   s-^mtMit    t:.   loeati   I   >it   I*..     Sim't-   11».    IMH i'   > 

can be expressed as   t mu-t lunals  of   the  various   V   ii'   i, oq«    {4\ • 

is actually  .1   ;• t   ol   ••>|u.uion»  toi     !•    self-con! 1   '-Mit lit.:- 

minat ion of   the v,. 

At   presei t   lhi^  U-irnchy of  equations  has  not i.» • 1 

■Olvedi       In.tfud    1   run -lion  PtK   )    ii    u-faiu«.!   UH 

I   J . -v   (P   )/kT  d^ 
P(K.)   -       «   (1 (r   )   o     l     l -~ij , (42) 

J Ji-1 ' AH 

where the notation h^/dR. impllcu integration keepinq R. 

constant.  Not»« that r-IR.) will «jive th« .>nd to end distribution 

o( tho polymer as j, n • •.  In deriving the differential 

luation tw» aasui.ipt j"i  it. 1 ide.  rii«» first expresses u(R..> 

1 . 

u(Kij) - kiv tHi ^        , (4J) 

where !i   is an appro]-riato segment interaction constant, and 

the second is the assumption thai the distribution includina 

excluded volume effects is still <j-isssian.  The different  1 

equation may bo solved, and usiin this solution it is possible 

to compute thr- near squar( ei I '^  -«nd dis^.^nce. As Indicated 

earlier cq. (^7) is once again recovered. 

Edwards * ^ sell consistenl Tu Id was t»ol derived Iron .1 

variation principle and i-.i  equivalent to tho assumption 
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pcljili,) - fclji      . <44> 

He also is able to derive a differential equation for P(R.), 

the solution of which again recovers eq. (27).  Freed**^7 

has 8hov»n that Cdward self consistent field and the more 

general result of oq. (41) %re successive approximations In a 

functional integral representation. 

Much work still needs to be don« along the lines of 

solving the heirarchy of equations specified by eq. (14), and 

represents a challenging task for the near future. 

\ new application of the self consistent field method, 

in connection with which some initial research has been per- 

formed during this month of study, will now be discussed.  The 

application involves a solution (approximate) to the problem 

of computing the radius of gyration of a polymer molecule 

containing rings.  The difficulties involved in this compu- 

tation were mentionee at the end of the psrovious section. 

Consider ■ polymer molecule containiny ■i    in 1 

branches something like the example illustrated in Figure 1. 

R| 
Figure 1. 
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As in the Figure, the branch points are located by the co- 

ordinate vectors R..  The branches are then labeled by the 

jranch points which they connect.  Thus the branrh lyiny 

between R. and Rj will be the ij branch.  if two bran.-'u :. 

connect the same pair of branch point« an a-Klitional in.l< x 

will be necessary to distinguish them.  In the interest of a 

smple notation, however, we will assume in this exposition 

that such a complication docs not arise.  Now the number of 

segments in the ij branch will be denoted by n  and the 

total number of segments In the molecule will be n. 

The coordinate Un some laboratory frame of reference) of 

(45) 

the kth segment in the ij th branch will be denoted by r.  . . 
i i, K 

Tm enter of mass of the ij th branch will be c.. ^hile the 

center of mass of the entire molecule is c.  Finally, the 

radius of gyration of the ij th branch is denoted by S. 

vhile the radius of gyration of the molecule will be S. 

Within each branch the k th segment can be assigned 

a coordinate ^i;4 k relative to the center of mass of that 

branch.  Tims 

eij,lt = ^j,k " 24j     ' (46) 

where (if the segments an- all assumed to have the same mass) 

n. .c.     -   )   t .      . , {AI\ 
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from which it follows that 

v t n (48) 

pi,.»-« 
Now, from tho  definition of the radius of qyration, it follows 

that 

..,►,, (J9) 
nij sij " l  ^U.ä1 

Furthermotc 

(50) 
na- L  nij ^iJ " ^ |[riD'*   ' 

We can also assign coordinates to every segment in 

the molecule relative to the molecular center of mass.  Thus 

to the k th segment in the ij th branch we assign 

£ij.k " hi.k ' * 

Then for the radius of gyration of the entire molecule we 

obtain the relation, 

nS' - I       Itij kr 

13 »k 

(51) 

(52) 

Lliminatmg r, . . from this expression with the aid of cq. (46) 

and using eq. (48) we obtain 

- 2c-c^ + lcl2l <sn 

lj,k 
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Now from cq. (50) 

ilJ'^' '  I,3""«3« ' ^{fifn  '  "''■•|'   •       ''"" 

With this relation, the last two terns in c*|. (^3) m.iy be 

rosHeü as 

Usin^ e«]E. (49) and (r>ri) in eq. (53) we obtain 

-¥■ »U *  l^jl*) - lei« s- ■ I;* »U * I«« (56) 

N.'xt wo average over all configurations of the molocul»» 

keeping the locations of the branch points fixed.  Wo denote 

this average by < >R.  This, from eq. CiO) 

n. , n^ 
^s;'   - )   -ü -s*.^   * t    -i-i <lc 1?> R  ^  n  *n   R  4.  n  ^ij1  R 

V    "ii^tm  s 

where wo have used eq. (50) to rewrite the last term in eq. (56) 

Now •Sij R depends only on JR.-Rj.  in fact, if the branch is 

a freely oriontiny chain, it. can be shown that 

?  > "if f,  i^^cl —-4      +- —J _ sijR : TT" [J + n..*i ' (58) 
13 

where a is Uhe mean segment length.  Furthermore, since with 
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the branch pointr. fixed, the chance of ob.erving a gi/en con- 

figuration in one branch im  independent of the configuration 

in another branch 

<5ij * ^R - «Vi ' ^L*** • (59) 

This result can be substituted into the last term on the right 

of eq. (57).  From symmetry it is clear that 

«Va " ^V'V        • (60) 

Furthermore, <|ci:J|'>R will also depend, only on ^ and R. 

so that <S'>R given by eq. (57) depends only on the coordinates 

of the branch points.  The evaluation of the complete mean 

square radius of gyration, namely <s,>, involves averaging <8,> 

over all configurations of the branch points.  Thus all that 

is necessary for the computation of <SJ> is the distribution 

giving the probability of configuration of the branch points. 

Wo develop a variation principle (self consistent field method) 

in order to approximate this distribution function. 

First we note that if every branch consists of a freely 

orienting chain at low enough extension so that Gaussian 

statistics apply, the distribution function for the branch 

points can in principle be evaluated in closed form.  Thus, if 

p.j (|R;.-Ri|) - Pij(Ri;.) is gaussian function for the ij branch, 

the branch point distribution function 

P((RB}) d{$B} = Kn p^ (R..) d{^B}     i {61) 
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whore K is a normalizing constant and R  rt'ftrs to the 

coordinates of the set of branch points.  Mwn the p.  are 

gaussun it is possible to evaluate 

explicitly, by a cooidinato transformation which .«• .• ^1I. ^ ., 

(«. ') into factor integrals ©ach of which can be co^utad In 

closed fi>rm.  The matrix diaqonallzat ion involved in this pro- 

cedure however, depends sensitively on the connectivity of th« 

molecule so that in roost cases it is impractical to folle* this 

route.  Furthormoi'?, the metho.l fails for short branches wlv 

the assumption ot «jaussian behavior is Invalid« 

We theretoie introduce an approximate. Method! based on 

i Variation principle, which is capable of handlinq the non- 

gaussian case, and which, in spite of its dependence! still, on 

connectivity, -nay be easier to apply to some "average" Molecule 

characterised only by the degree ot i olymer«-a*ion and thr 

number of branch points,  i'or the purpose ol illustration, we 

work out the case of a specific simple branched molecul. con- 

taining rings.  This molecule is shown in Figure 2. 

Figure 2. 
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It hM A  hrunch point, und 5 branches, includinq 2 branches 

between point» I, and Ä..  since we are only interested in the 

relative configurations of the molecule we choose R. as the 

origin. 

Now with each branch point fixed the free energy of 

•ay the ij th branch may be denoted by 

Ai)mAii    "V     • (63) 

Presumably the value of A.. can be evaluated exactly 

•inc. a linear chain is involved.  if potential energy is 

important the methods discussed in Flory's book10 may be used. 

In the simplest case, for the freely orienting chain, A.. = 
i j 

-TIlj where S^ is the entropy consistent with a given value 

of  Rjj.  Furthermore, 

-A  /kT 
Pi*    (R..) - K..o  1J iJ   1J     ij ' (64) 

where K^ is a normalizing constant. 

Corresponding to a given configuration tl,) the free 

energy A((RÜ)) is given by 

AdR,.}) m  J     A. . (R. .) Ü     ij  ij   ij'       * (65) 

Furthermore, Pd,^), is giVcn by ^    m)   ^.^ ^ ^ ^^ 

in the alternative form 

,. t   .    »«A.)) 
P((Rt,}) =     r 

p 2 ' (66) 

where Z({RB}) is the configurational partition functic ion corres- 
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ponding to fixed (!*„} and Z is the total configurational 

partition function, 

Z - |z({RBJ)d{RB}      . (07) 

It is also true that 

AURj,}) =■ -kT an  Z({RB})  , (Ul 

and that the total ^onfigurational free energy is 

A = -kT in Z      . (69) 

From the last two equations, 

[A-A({RR})]/kT 
P({RB}) = e      B . (70) 

Thus, the possession of A({$B}) will not by itself determine 

PUiL}) because A is not known. 
B 

Suppose, however, that we wish to make maximum use of 

information on AHfL)) in order to estimate A.  To this end, we 

can guess at the function PHlL}) in the hope that some further 

principle will be available to assist with the process of guessing. 

We denot.t« the guessed value of P({ÄB}) by P#({^B}).  Now, since, 

within this approximation, the fraction of time which the system 

spends in d(RB) is given by P#({$B})d{^B}, the contribution, AÄ, 

to the estimated A from this configuration, might, at first, be 

taken as 

PA(i£B})A((£B})d{ÄB}     . (71) 
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However, the full value of A# must also include entropy 

contributions arising from the uncertainty as to which con- 

figuration, {RBh the system is actually in.  Thus, we must 

include a term 

kT P,({RB}) ^ P*({V)d<V 
(72) 

in the estimate of the total free energy.  Adding the contri- 

butions defined by eqs. (71) and (72), we get 

A* 3 
'p*üV)A({V)div ♦ kT jp^aV) ^ p,({iSB})d{V- (73) 

It is easy to show, for any choice of P*({RB}) which 

satisfies the normalization condition. 

P,({RB})d{-RB) = 1 
(74) 

that 

A* £ A 
(75) 

Herein lies the variation principle.  To prove eq. (75), we 

substitute, ineq. (73), using eqs. (66), (67), (68), (69), and 

(74).  The result is 

A^ = A + kT >*«V) JlnP((RBl) 
d{RB}  • 

(76) 

Now eq. (74), together with the equivalent normalization of 

P({R }), can be shown to require the integral on the right to 

be positive or zero.  This assures the satisfaction of eq. (75). 

The best choice of P*({*B}) will be that which therefore 

• 
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minimizes A#.  If there are no constraints on P^fRgl) beyond 

those of normalization, then the extremal is supplied by 

P#({RB}) = P({ÄB})     , (77) 

which, by eq. (76), gives A# = A.  On the other hand, we may 

constrain the form of PÄ({RB}) to be such as to simplify the 

cooperative problem, in which case eq. (77) will not hold. 

As indicated earlier A({RB}), specified by eq. (65) 

can prematurely be evaluated more or less exactly.  We there- 

B1 
fore replace the true P({iL}) by a product of "single branch 

point" functions. 

P,({RB}) = J ^ (Ri) (78) 

where normalization now requires that each single branch point 

function satisfy the constraint 

j^ (Ri) dfc. = 1     . (79) 

We then substitute eq. (78) into eq. (73) and choose the set 

of 4». (R.) which minimize A# subject to the constraints imposed 

by eq. (79).  Thus we look for the solution to 

ÖA* - öJTT *i(Ri) I Aij(Rij)d{RB} + kT u ^.(R.) in  4^ (fydU^} 

6{Ui{Si)dÄi} - 0    . (80) 

For the particular molecule illustrated in Figure 2 we 

= 0 
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have 

A# =  Lp (R2)(|)3(R3)<K(fc..) lA12(Rl2)+A23(R?3)+A2'. (R2..)+A3.( (K3'.) 

+AU (Ra^) ]dR2dR3dRu 

+ kT f<))2 (^2)4)3 (R3)4)'4 (^'*)ün{4'2 (R?)'J'3 (Ri)4"( (RM) JdRzdRidlU. (81) 

Application of eq. (79) gives 

A* ■ <})2Al2dR2+U2<))3A2 3dR2dR3 + (|)2(J)4A2udR2d"R14+   ^|#4 [A3 4+AU]dR3dR1) 

+ kT 
r . f ± 

4)2 An ^adla + kT $i in  #sdli + kT 4)4 in  4>'*dR..  , (82) 

where we have not shown the arguments of the various functions 

under the assumption that they are obvious.  Performing the 

variation indicated by eq. (80), we obtain the following set of 

equations: 

02 = K2 exp {- j^r [Ai2 + 4)3A2 3dR3 + 

0 3 = K3 exp {" jjr I 

04 = Ki, exp {- j^r t 

02A23dR2 + 

02A2i»dR2 + 

0i(A? i^dRi, ] } 

04[A34+Ai4]d$4]} 

03 [Asu+AUJdSs] )      • (83) 

Eqs. (83) are to be solved simultaneously for the 

functions 02, 4»3, and 0-.  The solution can be substituted 

into eq. (78) to obtain an approximate distribution function, 

P(U }), for the branch points with the aid of which the 

various averages < >R appearing in eq. (57) can be further 

averaged to give <S2>, the mean square radius of gyration. 
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" i- to the treatment of  .^ 
ed'  - ■- .d^UM. 

- only by the n_r of branc     ; ~ -.u-u. ^actpr. 

-~t an interativo „ 
'-In. of possibiUty. "• '83, »o™» within the 

IV-     Rubber Ela.n„.>r 

As indicated in Section I kk 
of p—«- —ngly j th:: n;;;::-avmportance 
-ndition the ^ ^ bc ^     *  ^ 

—ine. -auy. bUt not alwa; ;-—- 

,UU f— ^ —-nsionai „etwork     Y^1^ 
ring molecUlüs aiacuesed in tne la .     " ^ '^ 

—tionai principie u      
C netWOrk """^ - ^ principle suggested for the fr«.«- 

n-oleculos could find im treatment of .sUch 
ffiM important apPiication in 

« well.  m the dense bulk stat.    . n0tWOrkS 
1K state excluded volume «fM: 

bound to be important and self co  , "^ ar0 a seIf consistent PIPIH a^ 
be of considerate utility. ' 'leld «PProaches may 

A-ong «- truest attests at the tre^ 

-chanical properties oi bui, DO1 "^^ 0f the 
DUIK polymers is fh« ♦->, 

elasticity.  Thls th    .. 
y  nas undergone very 11**«. • 

"•*•   Sin- «- early efforts of Guth j 
i.u- ^uth, James, and w^n ^ 
th.rty years ago, and there ,, 

Wal1 ^ 

advance. r00'n for «"siderable 
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The essence of the present theory is as follows. 

Consider an Isotropie cube of rubber of edye L^ and volume 

Li in LIIP undeformed state, and make the following assumptions: 

(1) It consists of a network structure each branch of 

which contains the same number of freely orienting 

segments (no potential energy). 

(2) The distribution of end to end distances for the 

branches is the same as if the branches were free 

molecules.  Therefore the fraction of branches of 

length R in dR is given by eq. (2) which we now 

rewrite as 

P0{x,y,z)dxdydz = 
3 

2Tina? 

3(x:'+y?+z?) 

e    2na2    dxdydz , (84) 

where we have used R2 = x'+y^z2 

(3)  When the rubber is deformed the distribution function, 

eq. (84), undergoes an affine transformation.  This 

means that when the v-»dges go from all of them equal 

to L to L , L , and L , respectively ?    ■* P  such 
o    x  y      z *J 

that 

P(x,y,z) ■ u   a   a, x y z 

3  fx
2 . ill . z2 

I   •/« n     2HiJ1^:  a2   cx*J e        x    y    *< 
27Tna? 

(85) 

where 

u  =L/L,u  =L/L,a  = L„/L x   x' o  y   y' o'  z   z' o 
(86) 
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(4)  Finally, the rubber is incompressible, 

(87) 
a a a = 1 x y z 

This assumption is not absolutely necessary. 

Since there is no potential energy the change in internal 

energy upon isothermal deformation is zero and the combined first 

and second laws of thermodynamics require that, the change in 

NkT 
1  "ET 

1 (89) 

where N is the number of branches or more properly, strands, 

in the network. 

Actually, besides the entropy change deduced from 

eqs. (84) and (85), another contribution must be considered, 

associated with a quantitative difference, between th« un- 
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1 , .i <88) dS = ± (DW) 

where DW is the mechanical work done b* the system during 

deformation.  If we choose ax = a and ay = a,, then with eq. (87) 

the state of deformation is described by a alone.  Furthermore 

DW in eq. (88) can be expressed in terms of the tensile stress 

t and strain a.  Equations (84) and (85) allow one to enumerate 

the change in the number of configurations accessible to the 

network upon deformation and so to compute dS.  When thin 

result is substituted into eq. (88) the following stress-strain       . 

relation is obtained 



ü 

daforrned and deformed state, in the restriction« imposed on 

I]      configuration by network branch points.  However, this con- 

tribution does not change the form of eq. (89). 

U Assumption (1) and (2) above are quite ad hoc in 

their characters and it is desirable to find means of elimi- 

^      nating them.  Also it is of some importance to introduce the 

effects of excluded volume (this time-of an inter-chain 

nature) and potential energy.  The self-consistent field 

Ü      approach may have much to offer in accomplishing these re- 

finements. 

V.     Glassy Polymers and the Glass Transition - Some 

New Research Ideas 

Most polymer masses undergo a transition from a rubbery 

to glassy state as the temperature is lowered.  This may occur 

[]      independent of whether or not a network structure exists.  The 

[[ onset of this state is generally signalized by dramatic changes 

in viscoelastic properties, especially in the spectrum of re- 

laxation times characterizing chem. However, there are often 

significant thermodynamic or quasi-the..nodynamic effects, such 

,is hoat capacity anomalies. 

For some time it had boon thought that the transition 

0      to the glassy state did not involve a thermodynamic transition 

but merely corresponded to a gradual "quenching in" as re- 

Uxatlon processes slowed-down with decreasing temperature. 

[1      This point of view received support fro« the fact that longer 

. 

:. 
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time experiments designed to explore slower relaxation processes 

led to lower glass transition temperatures.  Recently however, 

there has been a growing conviction that the transition is, 

fundamentally, of a thermodynamic nature.  Gibbs and DiMarzio19 

have sot forth a theory for this effect which, though obviously 

incomplete, is convincing. 

According to this theory, there are energetic effects 

which act to establish a disordered configurational state as 

being of lower energy than any ordered one.  Furthermore, as 

the temperature is reduced the system, if allowed to come to 

equilibrium, condenses into a disordered state with a finite 

degeneracy.  This degeneracy is finite in the sense that if it 

is represented by a number of states, W, then, fl-n W = 0, 

relative to, say, Avogadro's number.  As a result all con- 

figurational entropy vanishes at the glass transition even 

though the system remains disordered (in the sense that a 

periodic lattice is not formed). 

Actually, the Gibbs-DiMarzio theory is highly modelistic, 

and is based on a lattice model of the disordered state.  In 

addition, several other ad-hoc assumptions concerning the ener- 

getics of the system are made.  It wou.ld, therefore, be of 

significant value if a theory could be developed without appeal 

to .1 lattice. 

In this connection, the present author would like to 

suggest that another system exists in which a transition has 

b-on studied which on closer examinat ^ has many features 
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seem to bo related to the glass transition.  In fact, one 

might say it undergoes a "hyalo-phobic" transition and there- 

fore avoids the glassy state and loss of configurational 

entropy.  The system in question is the well known fluid of 

rigid spheres studied by many authors.  It is known that as 

the volume of the fluid is decreased, the number of sphere:, 

remaining constant, a point of density is reached well bf.-low 

the density of close-packing, at which the system undergoes a 

transition to the crystalline state.  This transition has been 

observed both in approximate analytical theories20'71, with 

and without lattice models, and by computer methods, either by 

means of Monte Carlo techniques or through integration of the 

dynamical equations of motion.  Although there is no absolute 

proof, the existence of the transition is regarded as well 

established. 

Now since there is no potential energy the thermo- 

dynai.iics of the rigid sphere system is based entirely on con- 

siderations of entropy.  Regarded from this viewpoint, the 

"causative" mechanism of the transition is very likely the 

following. 

As the volume is decreased and the system remains in 

the disordered fluid state the number of distinct configurations 

available to the collection of rigid spheres is progressively 

decreased.  It is well known that spheres can be packed more 

efficiently in an ordered rather than a disordered array.  As 

a result the system begins to "jam" at a volume larger than 
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that of close packing.  As this "jamming" continues wit1 

further decrease in volume it is accompanied by a simultaneous 

decrease in the number of accessible disordered configurations, 

until a point is reached at which only one, or at the most a 

relatively finite few, configurations are available.  Thus 

the entropy of the fluid approaches zero as in the case of tht« 

glass treated by Gibbs and DiMarzio. 

However, unlike the case of the glass it costs the 

sphere system no energy to adopt an ordered state while at 

the same time it can realize an appreciable gain in entropy. 

Thus if a small volume of the fluid crystallizes, the more 

efficient packing which occurs "loosens up" the remaining 

fluid by providing it with more volume and more configurations. 

Thus crystallization leads in this case to an overall increase 

in entropy and the transition occurs.  The rigid sphere system 

is thus able to avoid a glass transition by becoming ordered. 

The transition may then be thought of as being induced by 

an aversion to the glassy state — hence the suggested termin- 

ology "hyalo-phobic". 

Since this hyalo-phobic transition can be studied with- 

out introducing a lattice it may be worthwhile to start the 

search for a non-lattice theory of the glass transition by 

building further restrictions which forbid ordering into the 

hard sphere system.  This represents an interesting challenge 

for the future. .1 
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It is worth Mutiny that uuch a modified hard sphere 

model might form a useful theoretical basis for the study of 

amorphous metals and semiconductors. 

Another area of increasing importance to polymer 

technology combines both the features of the glassy and 

rubbery state in a single molecule; a block-copolymer.  Such 

molfcules involve a polymer of say typo A connected to a chain 

of type 13 which may in turn be connected to A, i.e., of the 

form AUA.  Now it has been observed that a bull block-copolymer 

can undergo a transition, as the temperature is lowered, such 

that the ü portion becomes glassy and separates (except for the 

AU and UA bond) from the A portion which remains rubbery.  One 

therefore achieves a composite structure in which the "filament" 

and the matrix are bound by a covalent bond!  Furthermore, the 

glassy regions often form a quasi-ordered array.  Obviously a 

great variety of specialized mechanical features imy be "engineered" 

in such substances. 

Such "engineering" would be considerably advanced if 

j.t were possible to predict the conditions of temperature and 

composition under which specific such "heterophase" structures 

would develop.  Some crude beginnings in this direction have 

been made by Williams22 in which he treats the heterophase 

state as a true two-phase system with an interfacial region 

between them.  It seems, however, that much more can be done 

in the way of a statistical mechanical theory employing the 

developing theory of the statistical thermodynamics of curved 
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interface«'* together with a better treatment of the statistical 

U.oiinodyramies of the glassy state. 

Mere again the self-consistent field approach may he of 

value.  for example, with the block copolymer of type ADA the 

bonding points between the blocks might be treated like the 

branch points Ri in eq. (75) while the A., might reter to the 

free energies of A and B blocks, respectively. 

VI.     Inhomogeneous Networks 

Three dimensional polymer networks are frequently con- 

sidered as homogeneous structures and their ultimate properties 

are generally related to the properties of such a continuum. 

Actually, if such networks were homogeneous their theoretical 

strengths should be about one hundred times higher than is 

ordinarily observed.  This suggests that those networks are in 

reality quite inhomogeneous -- regions having a high degree of 

cross linking being interlaced with those which are less heavily 

cross-linked.  From the practical point of view such inhomogene- 

ities may at times even be desirable, when they can confer on 

the system some of the features sought after in composites. 

Recently Labana, Newman, and Chompff21* have developed a 

theory (and performed experiments aimed at testing it) which 

indicates that the development of inhomogeneities is a natural 

outgrowth of the kinetics of the cross-linking process, and 

that indeed homogeneous networks are not to be expected. 

In such a cross-linking process there is a stage, 
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depending upon the functionality of the branch points, at 

which cross-linking has reached a level such that a "gel" is 

said to have formed.  For example, if the branch points are 

f-functional then, when on the average (f-l)-1 of the potential 

branches of each branch unit are utilized, the probability of 

formation of infinite network becomes effectively unity25.  This 

is the gel point.  Usually it is assumed that the gel thus formed 

is a uniform network. 

Labana, Newman, and Chompff obtain their important result, 

contradicting this premise, as follows.  They consider a single 

non-cross linked linear molecule in bulk polymer mass, about 

to be crosslinked.  They then assume as in the case of eq. (26) 

that the distribution of segments around the center of mass of 

this molecule (including the effects of excluded volume) is 

gaussian.  Thus, they write 

. 

3r i 

in which n is the number of segments in the molecule <R2> 

is the mean square radius of gyration and p(r) is the segment 

density at a distance r from the center of mass.  They define 

n(i1r<R?>J • (91) 
P(o) 

For a linear molecule <R2> is obtainable from eq. (5) and 

for a branched molecule, through the application of eqs. (29) 

and (30), but for a molecule containing rings another pro- 

II 
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cedure, described below, is necessary. 

As the initial unlinked molecule undergoes crosslinking 

it is assumed that the distribution maintains the form given 

by eq. (90) but that both n and <RJ>  change.  With this 

assumption it is possible to study the relative rate at which 

the molecule links with itself as compared to the rate of 

forming cross links with other molecules.  The analysis indi- 

cates that the rate of intramolecular cross linking gradually 

accelerates relative to the intermolecular process so that an 

inhomogeneity develops.  The system gels locally before the 

extended gel point is reached.  This result is summarized by 

the statement that "gel balls" are formed, and that these 

local highly cross-linked regions, separated from each other 

by more lightly cross-linked material, arsj natural 1 .«aturos of 

the network forming process. 

The actual analyses goes as follows.  At any stage of 

the process the probability that a segment of the molecule, 

located in the volume element dr, reacts with another segment 

from the same molecule is given by an expression which reflects 

the bi-molecular nature of the rate process, namely, 

Q[p(r)]2  dr    , (92) 

whore Q is proportional to the rate constant for cross-linking. 

From this it follows that the total probability of intra- 

molecular reaction is 
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0 

^internal    } 
uu 

By the satno line of roaioning the total probability of forming 

and inLormolocular link is 

p  k   . - Q f(p, - p(r)l p(r) 4rrMr   . «9^ 
^external    J ' 0 

o 

where p  ia the average segmontal density in the bulk |Kjlymor 

mass and p - p(r) is supposed to roprosent the density of 

segments in 4flr?dr, arising from other molecules besides the 

one in question.  The use of P0 - p(r) in this m.«niior repre- 

sents a first order attempt to account for the other-moloculo 

segmental density on the basis that part of P0 in the volume 

element 4nr'dr Is accounted for by p(r) from thi primary 

molecule under consideration.  As we shall show, this is I 

somewhat inconsistent approach since ö0 and p(r) are not do- 

fined in the same coordinate system.  PO is defined in the 

laboratory frame of reference while p(r) is in the center of 

mass system of the molecule. 

In the present author's opinion eq. (94) should bo 

replaced by 

p     i ■ 0 ö^Qlr)  4'»r,dr 
^external    J  o 

(95) 

o 

The argument for this will be presented later. Also, Labana, 

Newman and Chompff insist that p(o) defined by eq. (91) can- 

not oxcood P0.  For very similar reasons the present author 

considers this to be an incorrect statement.  On the other 
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hand, in «pite of theso Inaccuracie« the substance of con- 

clusions drawn by Labana ot al. is not altered and their 

theory remains significant. 

Upon substituting eqs. (90) and (91) into oqs. (93) 

and (94) and performing the indicated integrations,  ne finds 

(using an obvious abbreviation of notation) 

pin   m      p(u) 

»'ex ' »»in  2'/' 5. 
(90) 

If, in fact p(o) < ö0# th«n, according to eq. (96), p. /(p 

*  Pln) could not exceed 0.354. 

According to eq. (91) o(o) depends on n and <R2>, 

and those change during network formation. With branched 

molecules, obtained by random intermolocular reaction of the 

central molecule with its neighbors, it can be shown, using 

the statistical methods for the calculation of the radius of 

gyration outlined in Section II, that p (o) changes only 

slightly as the molecule grows -- the distribution broadens 

but does not grow in amplitude.  Thus according to oq. (96) 

the ratio Pin/<P#X ♦ Pin) «tays almost the same during the 

branching process* 

The computation of <**>  for a molecule containing rings 

Is another matter. As indicated at the end of Section II simple 

techniques do not suffice.  Using an indirect method which we 

shall discuss later, Chce^ff'» !• *bls to extimate <R?> as the 

cross linking proceeds to the point where rings actually form. 
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As rings form, p(o) undergoes a drastic increase, and p. /(p 
'in' ^ex 

+ Pin) also increases abruptly.  Therefore the process of ring 

formation increases the chance for more ring formation and o (o) 

increases rapidly towards po, then the "gel ball" which the 

growing cross linked molecule represents must grow outward 

(i.e., must become more extensive).  In this manner inhomogene- 

ities are produced. 

Before discussing the question of possibly improving 

the estimate of <R > for molecules with rings we comment on 

the validity of eq. (95) versus eq. (94). 

Wo return to the primary molecule whose center of mass 

defines tho origin of the coordinate system, and we denote by 

G(R) tho radial distribution function of the centers of mass 

of other polymer molecules about this origin.  The simplest 

estimate of G(R) is that it is constant (since molecules can be 

interleaved and since no segment need lie at the center of mass, 

two molecules may even have their centers of mass at the same 

point) such that 

Q 

i I 

G(R) - P0/M       . (97) 

Note that G(R)dR gives the number of mass centers in the volume 

element dR.  As before p(r) is used to represent the density of 

segments about the center of mass of a given molecule.  p(r) 

should already contain interference effects between molecules 

because it refers to the bulk state. Now we compute the 
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probability of a link forming between two different molecules 

in the volume element dr about the center of mass of the primary 

molecule.  The situation is diagrammed in Figure 3. 

Figure 3. 

The distances r, s, and R are self-explanatory.  Wa employ s 

and R as bipolar coordinates with an aximuthal angle for 

rotations about the axis r.  Then in place of p  - p(r) in 

eq. (94) we must use 

p J d* J sds J G(R) p(s) RdR (98) 

whore the range of integration for | must be (0, 2n) while the 

integrations over I and | must be taken in two parts as follows: 

r   r-fs    ■   r+s 
j ds  J dR + J ds  j dR 
o   r-s    r   s-r 

(99) 

The expression for p  now becomes 

pex " Q J p(r) d' J 4^ | Bd8 | ^(R)P(«) hdR (100) 
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where the limits in (99) are to be observed.  Employing eq. (97) 

for G(R) and carrying out the integrations over $ and the bi- 

polar coordinates eq. (100) reduces immediately to eq. (95) 

which proves the point. 

The new p  given by eq. (95) is 

p  = UP n f101) 

and the ratio 

pin   m 
P(o)      | (102) 

Pex + Pin ^ »»/« po   p(o) 

Unlike the expression given in eq. (96), even if p(o) exceeds 

p , as it may, p.n/(pov + Pin) cannot exceed unity.  As a matter 

of fact this is the upper limit for the ratio and indicates 

that ti€ instability in reaction (intramolecular versus inter- 

molecalar) can grow until no further reaction outside the growing 

molecule occurs.  Of course p(o) will probably reach some limit 

but it need not be p(j. 

Turning now to Chompff's26 estimate of <R2> for mole- 

cules containing rings it is sufficient to describe his method 

briefly.  In another context Chompff was able to generalize the 

Rousse model, to be discussed later, to compute the viscosity 

contribution, in solution, of molecules containing rings.  In 

this way he was able to develop a relationship between the 

structure and degree of polymerization of the moiecule and the 

viscosity.  An alternative relationship existed between viscosity 

and radius of gyration.  Thus by eliminating the viscosity 
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between these two exprosaions he was l«ft with tlie rol«tion 

between <R2> and structure. 

This suoms like an iwkw.nd metliod for dorivimj a 

geometric quantity like radius of yyration.  It amounta to 

computing an equilibrium quantity by means of an irruv«!- 

sible (viscosity) process 1  There should bo a more dlroci 

route, involving only equilibrium considorationa.  The aoil- 

consistent field approach for ring moloculoa, dnacrihod l>o- 

twecn eq. (45) through oq. (8J) sooma to offer promiao in 

this connection. 

As a final note wo should record the fact that the 

discussions during the current aumroor atudy have in cated 

that glassy carbon scoma also to bo comprised of an inhoirogencout 

network.  In fact, the inhomogenietiea scorn to have dimenaiona 

similar to those predicted by the foregoing theory and, indeed. 

apparently observed by Labana et al.  Since the pyrolyaia pro- 

cess leading to glassy carbon structures probably invoivea cross 

linking, the advances made in connection with inhonoqoneoua 

polymer networks may be relevant to the atudy of qlaaay irarhon. 

VI.    Polymer Crystals 

Crystalline polymers are alao known in the bulk atat«. 

Frequently they can be observed growing within aawrphoua polywr 

.•nasses as spherulites, and they have been known for many years 

as micelles in polymer fioera.  Until the mo'a the -frinqe* 

theory of polymer crystala waa well accepted. According to 
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this thoory « »inqU poJytwr w>l«cuU could run it» oourM 

through both crytiallin« mcollos «nd Morphous fqionm,  «nd 

iho fraction of crytUlllnUy could v«ry with «MtorMl factor« 

such as ttat« of strain» «to. 

It waa a««uMd that tha polymr aolacula« within 

•ic«U«« lln«d up uith th«ir as«« parall«! to on« anoihar. 

D^rinq ih« IMO*«, aspiKrially und«r th» mflucncw of 

lloffMn and hia aaaoclat««* vigorous «Kpvri^nial «nd 

ihworatical ^rk" «aa p«rfon»d on poly«»r «lm|lo cry«t«l«. 

especially poly«thyUn«. Th« cross r«f«rancin^ of theory and 

expermnt haa Made it clear that the polyaer chains in a 

crystal (and also in spherulitos and moall««} ar« highly 

folded bach «^on theMelve«, and at« anything but straight end 

aligned aa in a bundle of sticks. 

rurthenure» recent »iorii on pelyavr norpholofy «ee«« 

to indicate that «pherulit«* in bulk «asaes are tied to each 

othf»r by thin fibrils so thai the polywr repreaenia a eery 

»les coMoaits indo^S. Nach work needs to be done in thin 

4fP4. 

Perhapa one of the nost interestln*t bus of infor^ii€>n 

uncovered by tbe interdisciplinary eachan*» of the aiewer etudy 

is the fact that non chain-folded polyethylene cryst«ls can 

be produced by allowing s polynerlc Mit to cry«tallit# under 

eonduion« of flou, «.«., uhll« being stirred, «uch crystal« 

ehich eeen to have the noleculvt «ligned parallel to their 

long aae« are found to be very strong Cslthough ihey have soae 
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flaws). 
It it poMlbl« that they could form idoal carbon 

fllaMnta for ua« In carbon compoaltoal  Exploration of this 

poaaibility ia atronqly rocommondod. 

vm.  rrictional and Dynaaical Effocta 

Tha incra».ntal viacoaity imparted by polymer mohcuUs 

to a aolution haa bMn invaatlqatad at «reat length. These 

«ffocta aro usually discussed in taras of the intrinsic 

viscosny defined as 

.1    it. 2111a a03) 

111 • L4B iTc^    ' c*o e 

«Here n 4s tha viscosity of the solution, n0 is the viscosity 

of Uio puro solvent, and c Is the concentrstion of polymer 

solute in i/ce.    This luatii* quantity (n la a function of c) 

roproaenta tho relative increaae in viacoaity per solute 

The wthotfs d«velo|Hrd for the trestmont of visco- 

dynaüicsl effects for poly»r molecule, in solution sra to 

a Urqo mmtmnt  applicable to the treatmni of relaaation 

effect« in bulk network polymer«.  In fact, a beginning haa 

already been mad« by Chompff and his collsborstors in this 

respect, «b tharofore outline SOM of those methods end 

indicate SOM directions of research which might be fruitful 

I« i*o UMdiate future. In thla area. In particular. 

ie<*ni'|M.ii of th«' «olid state phyalolat. «a|«>cl«lly lhose 
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connected with the lattice dynamics of disordered lattices, 

seem to hold a great deal of promise. 

In the discussion it is convenient to have in mind a 

particular flow field. We choose this such that 

(104) 
vx = gy. vy = vz = 0 

whero g is a constant, x, y, z are the coordinates of position 

and vx, v , and vz the components cf flow velocity.  This flow 

could! for example, be generated by the motion of one of two 

parallel plates (with fluid between them) perpendicular to the 

y axis. 

Let a  and 3/ be the stresses, in the solution and 

solvent respectively, exerted across a unit area S whose^unit 

normal is «^  We evaluate the increase in stress, ov - av
0, 

(at constant rate of shear) due to the introduction of polymer 

U      molecules.  This fundamental derivation is due to Kramers 

who recognized, that the increase of stress is due to the tension 

in the segments of the polymer chain which intersect 2.  He 

considered a molecule with n 4- 1 segments. The terminus of 

the j th segment is located by the vector R. while the vector 

"*■    o    R      The 
length of the j th segment is given by ^ = Rj " Rj-r 

fl      tension along the jth segment is denoted by T..  If P is the 

U      „umber of polymer molecules per unit volume, then by averaging 

[J      over all configurations of molecules intersecting t  it is 

posaiblu to «how that 

0 
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% - V ■ P I   ^(rj ' ev)> (105) 

where the brackets indicate the average over all OOftfifttratiOAl 

of a molecule. 

The total force exerted on the j th segment is derived 

from the "gradient" of |. from segment to segment and the 

frictional force F^. on the segment.  Thus the equation of notion 

is 

d?R. 

" dU1  ■ Vl " ^j " ?j • ^b) 

Since inertial effects may be neglected the left side of eq. 

(106) may be set equal to zero and the result substituted into 

eq. (105).  After a small amount of manipulation, one obtains 

K = V -p I <?j (*j • K^      > do?) 

whore the boundary condition 

To = Tn+1 " 0 (108) 

has been used.  If we set 1^ = ey, the x-component of o 

becomes 

axy = axy0 " p f <(^ ' Kn*i   * V*      ' (109) 

and since, for the flow field described by eq. (104) 

(,xy " ng     ' (110) 

eq. (109) can be converted into 
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and, finally, it can be shown using (]]1) that 

NA 
1,11 = " ^Tg | "tfi" ' (112) 

whoro NA is Avogadro's number, M the polymer molecular weight, 

Mid \\x  = F.   ex is the x-component: of F  while y, ig the y 

. 

co^ponunt of u.. 

This extremely important basic equation is mod in a 

very central fashion in the evaluation of the intrinsic vis- 

cosity,  m the form shown in eg. (112) it appears disarmingly 

simple.  It must be remembered however that the evaluation of 

the average indicated by the brackets in eq. (112) requires 

the possession of the molecular configurational distribution 

function in the nonequilibrium state characteristic of the 

flow.  m essence, then, the remainder of the problem involves 

the determination of this distribution function. 

The distribution function is a density P(R0, R,...^ ) 

in the space defined by the various ^.  if it is assumed that 

each segment interacts dissipatively with the solvent through 

a friction coefficient, r., such that the frictional force on 

the segment is 

^4 = ^ (u. - v.)      , 
J     J    J      ' (114) 

where ^ is the velocity of the surrounding fluid at S. while 

u. is the velocity of the segment, then a Fokker-Planck equation 
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can be derived from which it may be shown that 

3i  • fl4 ♦ | J-fiü + ^^ - ^ v^      , (114) 

In this equation ^ is the flux density in the Ä. direction 

in the generalized configuration space.  In other words, i. 

measures the average rate at which P changes its generalized 

position because the ith segment changes its position.  V. 

symbolizes the gradient with respect to &,,  while X. represents 

the force on the ith segment arising outside the molecule and 

-ViU, the force from within the molecule.  The continuity 

equation requires 

If••  L 4 *i    * (115) 
i"0 

Since the current density is also e oressiblo as 

^i = P u. , (116) 

use of eq. (113) and (116) in eq. (114) gives 

£. = -^U ♦ 14 - kTVi An P    , (117) 

so that the frictional force which must be used in eq. (112) 

is seen to be expressible in terms of both intramolecular 

(-Viu) and external (J^) forces and, not surprisingly, an 

entropy generating "statistical" force, -kTV.AnP, associated 

with intramolecular diffusion (Brownian motion).  Thus P in 

eq. (112) is not only involved in taking the average repre- 

sented by the brackets, but also in F. . 
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Kirkwood has attempted a very general evaluation of 

P in Ricmann space.  However, this approach, in spite of its 

systematic beauty, has not been easy to apply to tho computation 

of data concerning real systems, and another,, more heuristic 

approach is more frequently employed.  This is the so-called 

Rousse "spring and bead" model28.  It may be applied in the so- 

called "free draining" and "non free draining" cases.  The 

former refers to the situation in which the perturbation in 

the flow field at segment i due to the influence of other 

segments, say segment j, etc., are ignored because they are 

assumed small, while in the latter case such perturbations are 

included in the treatment. 

Although we shall limit our considerations to the free 

draining case it is pertinent to mention that a sort of Green's 

function tensor, the Oseen tensor, is used in the non free 

draining cane  which expresses the effect on the flow at segment 

i at iS. of the perturbation due to a "point" segment at R.. 

The Oseen tenser formalism is a fruitful point of interaction 

with physicists and continuum mechanicians. 

The Rousse model may be described as follows.  We start 

with a linear chain molecule and formerly divide it into sub- 

molecules, all of the same size, which are to constitute the 

n molecular segments.  Each segment is assumed to be a frocly 

orienting molecule having an end to end distribution of the 

gaussian f m typified by eq. (9).  Using eq. (64) we can 

write for the ith segment 
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-j^/kff 

or 

T(ri) - Ke 

Ai(ri) - kT in K 

[iTOiT, e (118) 

(    3   )3/2    »» ri 

2iT<a2 
(119) 

In both of chese equations K is a normalizing constant. 

T'.c tensile force ii  in the ith segment is obtained 

by substituting A, given by eq. (119) into the thormodynamic 

relation 

JA. 
Ti - " TrJ ' 

(120) 

and the result is 

3kT ♦ 
TZTT  ri - •c(Äi - ^.j^) (121) 

so that the segment actj like a spring of moduluu 

3kT 
<a?> 

(122) 

In eq. (114), -V.u is the intramolecular force on tho 

ith segment.  In our model this force originates in tho 

effective springs to which eq. (121) applies and it follows 

that 

Viu - K(S0 - S1) , i - 0 

" ^"^i-l * 2^i " ^i-t'i) '  i < i < n-1 

■ *l-K  i + i^n> i • n n~i   n 

(123) 

.i 
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Since wo ato  dcmllnq with th« -fr«« draining" caie wo Mt Xl 

in cq. (114) equal to «ore. 

Tho friction cooffjclont c in oq. (114) U «till a 

•cml-maeroacoplc quantity. Thus tho pr«aont modol does not 

treat the molecular di.tlpatlon procoa« directly.  Nevorlhcloaa. 

it doos allow all relaxation time« to bo oxprotsod in term« o£ 

this ainqlo diaaipatlvc quantity c.  In qanoral, wo take t.  pro- 

portional to tho «ix*» of tho aubmoleculo or «egment. With thi« 

aaaumption it turn« out that tho final result of the theory U 

independent of the «lie of the «ubwoloculo, «o tho choice of 

size la not critical. 

Now we define vectors and matrices in tho complete 

configuration space spanned by the set of vector« l|« The 

vectors are 

* - (Ä,. Ä,, . . . . An) 

v - (v0, vi, . . . . vn) 

J ■ (Jo. J|# . . • • Jn) 

• - («., Il V 

while the matrix Is the trldlaqonal array 

(124) 
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1-10 0« • • 0 

-1   2 -1 0   • • • 0 

0  -1   2 -1   • • • 0 

0  0 -1 2   • • • ü 

A • (\2'>) 

0   0»   •   •  -1   2  -1 

0   0 11 

With these doflnitiona, oq. (124), and with X  set equal to 

zero, the set of eqs. (109) may be expressed compactly as 

J - Pv - 7 ic A'Ä - ~ ifa     , (126) 

and tf«    (110)   bocomoit 

^T   .   pO   ♦  4? ■   -^T-PC   ♦   i  ^T»(. P  A'ft)   *   ~  'JT^   I'     , (127) 

where t    is the transpose of .'. 

Eq. (127) can be put into an easily solvable form by 

a similarity transformation which diagonalizes A.  We denote 

the matrix of this transformation by Q.  Then the diagonal 

matrix is 

A - O"' A Ü      . (128) 

The transformed (normal) coordinates are 

•' - Q-1 • R       , (l^'i) 
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while the transformed velocity is 

v^ = g-1 • v       . (130) 

Furthermore, the transformed gradient operator is 

tf. = Ü * tf , (131) 
* .        M . 

whero v. = (v. , v..  ... v.. ) 

Eq. (127) transforms to 

;)p 
t ? = -\?T • VfP + T- ^r * (<PA't) + S f! * ^rP    •       (132) 

Because A is a diagonal matrix, this equation contains 

no cross terms and can be solved for P.  In practice, eq. (132) 

is used not to solve for P directly, but rather to write an 

equation for <F.  y.> in Eq. (112), using for F.  the component 
jx J Jx 

derived from Eq. (117).  This equation can be solved, and the 

In] is computed from Eq. (112). 

The matrix A contains along its diagonal the eigenvalues 

of A, and so the problem can only be completed when these eigen- 

values have been found.  These eigenvalues are, in fact, easily 

found.  We may denote them by \,. 

Usually the measurement of intrinsic viscosity is 

carried out in a nou-steady flow field, oscillating at some 

frequency a).  In t Ms case, it proves desirable to introduce 

a complex intrinsic viscosity [n] which reduces to [n] ftt zero 

frequency.  Without going into any further detail, it turns out 

that 
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[n] = RT_  f    !j (133) 

where R is the gas constant and i is /T .  llM I^ 9**  the 

relaxation times related to the eigenvaluus >^ by 

r  = ^r- (l J4) 'J  ^ 
We have presented this rather superficial outlinr of 

the theory of polymer viscosity in order to emphasize the 

central role played by the diagonalization of the matrix A. 

We have not considered effects due to "non-free draining", 

cross-linking, excluded volume, or potential energy within 

the submolecules.  As indicated earlier, Chompff and co-worknrs 

have shown how the same theory can be applied to the calculation 

of the relaxation times of bulk polymer networks, and it is 

therefore quite important to refine the model. 

At higher frequencies, shorter relaxation times become 

important and this implies shorter segments.  Thus, we will not 

be at liberty to choose the lengths of submolecules as arbi- 

trarily as before.  Furthermore, potential energy may have to 

be introduced into the sogmental springs in an explicit manner. 

A moie careful examination o* the true meaning of the model may 

then be in order, and it is quite probable that a distribution 

of submolecule sizes will have to be used. 

Under these conditions, the normal mod«? problem (from 

which the relaxation times are derived) would become similar 
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to that encountered with solids when dealing with disordered 

lattices.  Certainly a straightforward diagonalization of the 

matrix, equivalent to A, will no longer be possible.  It is 

also possible, and probable, that band gaps will appear in the 

spectrum of relaxation times.  It seems as though this problem 

is ideally suited for the attention of the solid state physicists, 

especially those concerned with disordered lattices. 

Acknowledgement 

This research was supported by the Advanced Research 

Projects Agency of the Department of Defense under Contract 

No. DAHC15-71-C-0253 with The University of Michigan. 

-409- 



REFERENCES 

1. H. Yamakawa, Modern  Tkioiu  oi   Polymft  Solutioiu,  Chapter I, 
Section 5 (Harper and How, New York, 1971). 

2. B. H. Zimm, J. Chem. Phys. 16, 1093 k   1099 (1948). 

3. it Yamakawa, Mode mi  T/icuit/ si   Pcfiymt'l SofuttoHi,  p. 14 
(Harper and Row, New York, 1971). 

4. P. J. Flory and S. Flak, J. Chem. Phys. 44, 2243 (191.0). 

5«  S. Chandrasekhar, Rev. Nod. Phys. 15. 1 (1943). 

6. M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. W, 123 
(1945). 

7. H. Yamakawa, Modvun Thtolij  iM Potyme*  Sittutiom,  p. 21 
(Harper and Row, New York, 1971). 

8. Ibid., p. 16. 

9. W. Kuhn, Kolloid Z. 87, 3 (1939). 

10. P. J. Flory, StatiAticat  McchaiucA o{ C'ia(it Mofceufri 
(Intersclence, New York 1969). 

11. P. J. Flory, J. Chem. Phys. 17, 303 (1949); P. J. Plory 
and T. G. Fox, J. Am. Chem. Soc. 73, 1904 (1951). 

12. H. Yamakawa, Modeln  ThtoMj  oj Pclt/mc* Sotuttcm,   pp. 79-93 
(Harper and Row, New York, 1971). 

13. Ibid., pp. 120-127. 

14. H. KicsB, J. Chem. Phys. 47, 186 (1971). 

15. S. F. Edwards, Proc. Phys. Soc. 85, 61) (1965). 

16. K. F. Freed, J. Chem. Phys. 55, 3910 (1971). 

17. K. F. Freed, J. Chem. Phys. 54, 1453 (1971). 

18. T. L. Hill, Inticducticn  to  Stata (ici(   TheM*odynamici, 
Chapter 21 (Addlson-Wesley, Reading, 1960). 

19. J. H. Gibbs and E. A. Dimar:-io, J. Chem. Phys. 28, 373 k 
807 (1958). 

20. W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 (1968). 

-410- 



.. 

• I 

11 

il.    J. 0.  Kirkwood,  K.  ft. Itoufi. «ml ft. J.  Ald*r. J.  ChM. 
Fhyi.   11.   1040   11950)1  J.  0.   Ktrkwood «nd ft.   H.   ftOffa* 
J.  ChMi.   Phy«.   iO.   J94   11943). 

??.    N. 0. MIIII.IM, foly«pr U»tt«rft ■.   IM 11970). 

21.    S. Ono and S.   Rondo,  Ntfudfrueft <fM  ffcy*<ft#  Vol.   10 
(S|»rin««r.  ftorlin,  1900). od. by ft. fldgf«. 

24*    t.  ft.  I4b*n;  ft.  MovtMn,  «nd A. J. Champtt»   rpti/mt* 
Htt*0*ki, SHueiuu, «ml *eek*mc*t  rtppnitt*   frionuM 
Prw««.  New York,  1971), od. by A. J. Chemptt «nd ft. Wmumn, 

25.    I*. «I.  riory,  r44«etf>lr« »i Potft* Ckrmut**,  p.   151 
(Cornell Unlwrauy Prom»,   1951). 

20.    A. J. Chomptt, J. Che«.  Phy«.f  to I* imlilliihod. 

27.    J.  0.  iioffMm,  ftrt trano.  4.   115  (1904). 

20.     r.  I.  Hott««. Jr., J.  Ch«o.  Fhya.   21.   If2  (1953)t 
ft.   ii.   SUM. J.  Chmm.   Phy.   24.   209  (1950). 

-411- 



A nun; OH rm OHOUM» mm UHIHOV 

or AN AMoatt.v or twmMcriin KUXTKMS 

Aklff«   UlhAT«* 
t.  «.  Mont rot I 

Th» ground ttat« »iwr^y of «n MM«fcly of otMr^cd 

p«rt&elos of d**MUy p lateddod in « cenilnuu» of eti^rq«* of 
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Asyn^tottc forsulno for ihm «round •\*i* onorfy of «ucti »ysinM 

«r« known in UM hl«* and low donnliy nqim—.    An interpola- 

tion forwuU cov»rin< UM «ntiro doMlty ri^f  »» doriwd u«in« 

UM iMtitod of  two point Pad^ «ppromiMnts.    A pUMe transition 

fro» *n «Uctron  Uttlco to «n oloctron «!•• MOM to occur  «t 
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i NOTK ON Till: GROUND ST ATI: MMI 

OP AM Atf&UIULY OP INTERACTING KI.IXTHONF 

Akir« Ulhar« 
g. w. Montroll 

A pcronni.il Many-body problM cowon to tho thoorinf 

of i»i«lt «ad of tho intornal constitution of «tart («apodal ly 

ilu* whlto d^arfal la th« datomlnatlon of the «iround i tato 

»«m*rgy of «a aaaoaLly of point-ohar^od partlclaa aa a I unction 

of ttoir nuabar danalty.  In a traditional aodal« tho olvctrical 

nautrality of tha aaaaably It aalntalnad by iabaddin« tho point 

ctiargaa* which w« identify as alactroaa (in tha thaory of vhlta 

dwsrf«, tha poaitivaiy char^ad nocial are conaidarad to La tha 

point Chartas)• in a continuua of positiv« char^a.  In th« 

«round ttata (0*K)( tha only paraaatan which appoar in a non- 

r«iatlvisitc thaory ara Planck's eoastaat h* tha charged particia 

dMialty at aaaa a, and chAry« a. Tha baatc diaanaionlcss 

•fuaniiiy proUwced froa ihre« paraavters It •»•'/B'»1'*, An 

lap^rtant aanabla proportional to thia coabination is rn • rn/tlx 

«rh<re r is rolated to th« density *. through th« definitioa e 
U/Jltr^     a*1 sad rs is th« tohr radius, n'/m*, 

finoa th« «n«r9y of a parfact Patai gas i«. par particia, 

8f/ll •   Cl/llh'Cla/tl^Vl» CD 
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u 
^      the introduction of the coulomb interactions changes the ground 

state energy by a factor which depends on rg so that E/Df = 

II + w(rs)].  The central problem then becomes the determination 

of the functional form of wCr,).  In metals 2 < r3 - r, whilo 

in .stars its range is much broader. 

The high and low density limit behavior of our assembly 

of interest is somewhat different from that observed in molecular 

systems.  In their high density regime, atoms and molecules 

become localized in a lattice structure whose zero point vi- 

urations are quite small, for  very light electrons, localization 

•oald, through the uncertainty principle, force the particles 

t.. hav.- Uffi momentum fluctuations which, in turn, correspond 

to a high kinetic energy. The total energy, kinetic plus 

„otontial, might then be HitfMf than in the electron gas state 

in which the division of the two forms of energy might be better 

balanced.  However, at low densities, lattice localization need 

not be to severe so that the kinetic and potential energies 

»ight take up more equal shares of the total.  We have estimated 

that a phase transition from the low density lattice state to 

the high density gas state should occur at rs  14. 

Wigncr' showed that among the cubic electron lattices, 

MM boUy-contored one had the lowest lattice energy, its value 

Uoiiui U^. - -1.79186 r,-' Rydbergs.  nlnce the lattice nu.s. 

MtfM •<**  »«l» vibrations from Its oqullibnum state, ■ 

corrictlon for the energy of «ero point oscillations must be 

Mkted to this value of the lattice energy in the estimation of 
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the ground state energy of the electron lattice.  The first 

estimate of the correction, made by Fuchs^ in 1935, was im- 

proved by Caldwell-Horsefall and Maradudin3, who found 

EH = 2.638 rs~3/2   Rydbergs while Carr" had independently re- 

ported a value of 2.66 rg-
3/7. Carr has also estimated the 

lowest order anharmonic contribution which, when added to the 

above terms, yields the beginning of an asymptotic expansion 

for the ground state energy (in Rydbergs) in the low density 

(large r ) regime: 

EG = -1.79186 rs-
1   + 2.638 r^3/2   -   0.73 r^ + ... (2) 

At high densities, the limiting unperturbed state is 

that of the perfect Fermi gas.  As the density increases, ex- 

change terms and electron correlations of various orders become 

important.  These effects were investigated in a flurry ot 

activities in the late 1950's and early 1960's.  Gell-Mann and 

Urueckner5 calculated the lowest order correlation term while 

Dubois6 obtained the higher order ones.  The resulting small 

r expansion is 

EG ^ 2.21 rg-
2-0.916 rs-

1+0.0622 in  r -0.096 

+ rs(0.0049 fi-n rs + C) + . . . (3) 

whore C ■ -0.02. Progress in series expansions essentially 

stopped when it seemed that the calculation of another term 

or two would require a tremendous effort which would probably 
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not lead to a significant improvement in the understanding of 

the electron correlation phenomenon. 

The state of affairs is reminiscent of that which 

existed m the investigation of the 3D Ising model in the 1950's. 

By counting the number of ways appropriate graphs could be con- 

structed on lattices, a number of terms in a power series ox- 

pansion in reciprocal temperature could be obtained for the 

thermodynamic properties of the Ising ferromagnet.  The state 

was reached at which the determination of a new term required 

tremendous effort.  Until Domb7 and his collaborators and 

G. Baker8 showed hew to extract information from the coefficients, 

it was hardly wort' expending any more effort to obtain more 

coefficients. 

n ■ 
The Baker technique is to systematically express a power 

series f(x) = c^CjX + c2x
2 + ... as the ratio of two polynomials 

a^ + a.x + ... + a_xn 

" 

n 

f„(x) » -2 ! 1^ ^L 
1 + b,x + ... + b_xm .x + ... + b > 1 m 

by using the method of Fade approximants7'8.  The a's and b's 

are determined from the c's.  The nature of singularities in 

f (x) are found as well as their location.  With 10 to 20 terms, 

one obtains results of considerable precision. 

Our individual electron assembly expansions have fewer 
• ■ 

terms but, together, the large and small r expansions do have 

■ considerable number of terms.  Wo assume that they are two 

asymptotic forms of the same expression and attempt to use the 
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Padd expansion to lead us to an approximation ot tl.^t expression, 

Ono of the difficulties in doing so is that our small r expan- 

sion inoludes logarithmic terms and the small and large r ex- 

pansions are not of the same typo.  This fact makes a simple 

application of the Padd approximant method impossible.  However, 

one can circumvent this difficulty by differentiating E,, twice 

with respect to rs and expressing the results in terms of a new 

variable \ m  r 'a.  Then, one finds s 

"13.258  - 1.832x2 - 0.0622x2 + 0.018x6 + ... 

rsü"EG/drs ' i if x « 1 (5) 

1.-3.584x2 + 9.8925X - 4.38 - tx"» + ... 

if x >> 1 (6) 

where Eq. (5) corresponds to Eq. (3) and Eq. (6) to Eq. (2). 

In the latter equation an additional term tx-' has been intro- 

duced with an unknown coefficient t. 

Note that Eqs. (5) and (6) are counterparts of each 

other for the two limiting domains of x.  Since the right-hand 

sides are simple power series in x or x"*, it is now possible 

to apply the Pad6  approximants to 

fn(x) - r;{d
2EG/dr') (7) 

In the low density regime as x ► "' in Eq. (6), the first term 

dominates for very large x.  Therefore, in Eq. (4), m = n + 2. 

In the traditional applications of Pade approximants, 

one considers the expansion of a function about one point. 
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while horu wo wiah to take advantage of the fact that we have 

|J      independent information concerning the behavior of EG at two 

points, x - 0 and x - -.  A aimilar situation has arisen in the 

[J      polaren problem.  Sheng and Dow« have applied two point Padrf 

approximants to that problem. 

The systematic procedure for the determination of the 

a^s and b^s in (4) from asymptotic formulae such as (5) and 

(6) is discussed in Appendix I.  The values of these constants 

for the case n - 2 and m - 4 are 

ao - 13.2594,   a^   - 2.6600, aj   - -1.3617 r^  - -0.3676 

a.. - -0.12729,  b, - 0.2006,  b, - 0.03552 

while those for the case n - 3 and m - 5 are 

j a0 - 13.2594,  a, - 11.848,   a, - 1.0146 

a, - -1.2165,  aH - -0.4557,  a, - -0.1137 

b^ - 0.8954,    b2 - 0.21474,   b, - 0.03173 

The expression for f(x) given by (4) with those constants must 

]       bo integrated twice in order to obtain a formula for the ground 

state energy of an electron gas, EQ.  A systematic discussion 

of this integration and the resulting equations are presented 

in Appendix II.  The computed curves for EG as a function of 

rg based on Eqs. (7) and (6) of Appendix II for n - 2 and 3 are 

Plotted as (i) and (ii) in Fig. i. The zeros of the denominator 
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of f(x) of Eq. (4) for the n - 2 and n - 3 cato« have no positive 

poles.  Hence these approximation« to EG hav* no «Inqularltie« 

in the r^ range 0 < rg < -. 

Since the electron lattice ia the «tablo form of an 

aas.mlily in th« low density rcyimo while the olüctron «jaH ia 

the »table state in the high density regime, one expects a 

phase transition, the lattice melting, to occur at some intor- 

mediate rt value. Varioua eatlmates which range from rt - 5 to 

r - 2000 have been made for tho critical r|| valxo. Our two 

approximations to EG discussed above seem to be unsatisfactory 

becauae they give no indication of the existence of such a 

critical value. 

If we try to make the next (n - 4) approximation to Ec 

we are faced with the difficulty that we need to know the value 

of the coefficient t of x"1 In Eq. (6). This correspond« to the 

«ocond order anharmomcity contribution of the electron lattice 

to rM'E /dr'. This haa not yet been calculated, but we can 

investigate its Influence by assuming that it fall» In the 

Interval -2 < t < 7 and plotting Kc as a function of f, for 

»everal valuea of t in thi» range.  The »triklng new feature 

of the n - 4, m - 6 approximation to f (x) Is that it yields a 

pole In d'Ejj/drJ at rB - 14. 

The denominator of the left hand side of (7) In our 

present approximation Is a fourth degree polynomial with one 

positive, one negative, and two complex root«.  It I« tho 

positive root which leads to the singularity at rg  14. 

-420- 



Equation (7) can ba rawrittan aa 

ti)/b',x,Ph(x) (9a) d,Vdri " (Äo * J, Hf***** 
with 

P,(x)   U-a)(x♦b)(x,-2ax♦c,) <9b) 

The integration of (9a) i« ditcuaaad in Appendix 1. The result 

ia 

K.';' ♦ M;1 - (K« ■ K»ra) in r»" K"ri 

♦ K|((r -a») InCrJ-a)* - 2aijj} 

EG'V 

♦ K^Cr^bM InCr^b)1 ♦ 2brJ) 

♦ *,{[rm  ♦ (B^oMünKrJ-a)» ♦ ß*] - 2orj|} 

♦ K,l4rJ[ ♦ 2o InlrJ-o) ♦ ß'l» 

♦ K^^ltan-'MrJ-a)/^!! - ^ • IBlr;11) 

♦ K.^an-'MrJ-oO/lBl - Hi»! • K,, (11) 

The varioua coafficianta and roota are given in Table 1 for 

various valuaa of t. The parametera a0, b0# K,, K,, K, and 

Kw are completely independent of t while KG and Kjo have the 

strongest t dependence. The sensitivity is greateat for thoae 

terma which are large for large rt.  However, through certain 

baaic cancelationa, Ec itaalf is vary small for large r8 and 
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TABLE  1 

t 7 3 2 0 -2 

ao 13.2594 

•t 1.0315 0.9720 0.9571 0.9274 0.8976 

-32 1.6864 1.6887 1.6893 1.6905 1.6917 

-ai 0.2701 0.2629 0.2611 0.2575 0.2539 

-ai. 0.1406 0.1399 0.1398 0.1397 0.1395 

-as 0.008609 0.008360 0.008297 0.008173 0.008049 

-a» 0.1561 0.01562 0.01562 0.01562 0.01563 

bo 1 1.0 ii II II n 

bi 0.07780 0.07331 0.07219 0.06994 0.06770 

ba 0.01103 0.01086 0.01081 0.01072 0.01063 

-ba 0.009674 0.009694 0.009714 0.009752 0.009791 

-b- 0.00435 0.004357 0.004358 0.004359 0.004361 

a 3.8158 3.7957 3.7907 3.7807 3.7706 

b 4.4629 4.4814 4.4919 4.5035 4.5150 

-0 0.7807 0.7672 0.7638 0.7571 0.7503 

(±i)e 3.5882 3.5901 3.5906 3.5916 3.5926 

Ki 2.2099 •i H n II 

Ki -0.91633 ii •i n M 

Kj 0.0622 n II II II 

Kk 0.08558 0.08627 0.08644 0.08678 0.08712 

Ki 0.00977 0.00988 0.00987 0.00982 0.00977 

K« 0.000753 0.000773 0.000778 0.000789 0.000799 

-K7 0.002441 0.002396 0.002385 0.002363 0.002341 

-K. 0.008289 0.008264 0.008258 0.008245 0.009231 

-K, 0.001158 0.001543 0.001679 0.001830 0.002020 

Ki o 0.000645 0.000860 0.000913 0.001019 0.0011250 

KM 0.100797 0.101628 0.101834 0.102241 0.102644 

III 0.062200 n n n II 
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it is insensitive to t in that range.  In the small r regime, 

EG is essentially independent of t. 

Our estimate of the ground state energy is plotted in 

Fig. 1.  The most striking feature of the curve is the anomaly 

at rs ■ 14.4.  The location of the singularity depends slightly 

on t.  That dependence on t, as well as «.hat of the energy at 

the minimum and r8 value at the minimum of EG is exhibited in 

Table 2.  Curve (iii) corresponds to t - x. 

T«ble 2'  Certain Ec Characteristics as a Function of t 

-2 

EG minimum -0.16342 -0.16311 -0.16303 -0.16287 -0.16271 

r at minimum 3.77 3.76 3.76 3.76 3.76 

location of 
singularities 

14.56 14.41 14.37 14.29 14.22 

Note that while the location of the singular point 

depends only weakly on t, the dependence is roughly linear. 

At the singular rg, the second derivative d E /ir diverges, 

but EG itself is continuous.  In the immediat© neighborhood of 

singularity, the curve shows a van der Waals type loop.  By 

using an argument similar to that due to Maxwell for the inter- 

pretation of the van der Waals loop, the Maxwell equal area 

construction implies that a first order phase transition occurs 

at the singular rg.  For large values of r , the curve is close 
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to that reported by Carr, Caldwell-Horaefall and Maradudin\ 

U      The minimum in ^ for all t value, inve.tigated in the 4th 

y      order Padd approximant lies somewhat deeper than in the 3rd 

order case.  The rising part of the curve in the range 

3.8 « rs < 14 miyht bo attributed to local ordering which 

porsiatH at clomütius highor than tho melting point. 

The lilting of an electron lattice may bo treated in 

accordance with Lindemann's criterion.  For a bec lattice it 

is r8 - 0.40546- where 6  is thr ratio of the amplitude of 

lattice vibration to the interlattic. .pacing.  Using th. v.l, 

r8 - 14.37, it was found that 6  is approximately 0.4. 
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AppendIN  I 

L«t   u.   v**minm   •  •UttAtiOA   in «HliOh   tWO «•y«ptOttC 

for*« «r« know? for « fuAetlon ftsl 

M « • 0      CUI 

MS««        tib) 

M» discuss s systsastio Msnnsr of spproslsMtlng ft«) by s 

rstio of two polyooaisls 

•^ ♦ ••« ♦ ••• • •li♦i,,,,*' 
f.UI I lii*a.iij - -Ä 1 ßil^-       111 

n 1 ♦ b,« ♦ ... « bn«
n 

Consldsr first tits sasll s sMpsnsion of this rstlo. 

•y slsasntsry division, if tho rstio is to bs eonsistsns with 

fls) 

•o * Ao' •. 4 Vl * A. 

As *n •■««pi'i, 1st n • 2 in fi).  Then b, • b% 

■ ... • 0 And 

•o • V •• • Vi * Ai 

•• • Vi ♦ Äib. * Äi 
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•. • V. * v. * *. 
itftiur «quatiofui C«JI b« ooMiruct«d for « •   ). «ic.    Th« 

coniMtftior b«t«««ii tlM «••.  L«.  Md »•• U obt«liMd try 

\  »•<VI/V^'--MI/I,II,V        / 

•. • v, 
a «lb • » i 

rf»..r. n • ). m» first thr«« ten« iflply 

•• • w •• • v. • •.■>. 
i  - i» b  • i b  • • b 

and« wlwn n • 4. UM first four tor» Inply 

•• • Mi • ,.b.   •• • Mi * i.b.4 Ms 

in 

«71 

(!) 

The pattern la obvious for larfar valoaa of n 

Ma ara now in a position to discuss tha evaluation of 

th« fa.I and <b. I wtian Cn^J» Asa and n b's ara «Ivan. Thia is 

lit- 



•afftelsnt input data to find th« l2n*J) con«t«nti required 

for th« ln»2.n| «pproxiMtion. 

Mli«n n • 2# UM «lv«n dAt« valuos wwuld b» B0, b,» 

A - Ä%. MM b««lc «quatlon« would bo tho ■•t« (6) and (4). 

Tho vaiuo« of b «nd bf would b« dotor»lnod by oquatln«} boili 

oHprostlons for A% and *t 

•• • Mi - A.b. * A.b. * k* 

•• • Vl * llibt * Aib» * A»b«  * A» 

Th*n b «nd b, *ro «xprotalbl« M th« ratio of the two (2-2) 

dotonunonto. Tho quantity I ♦ b,« ♦ b,«' which appear, in 

the denoalnator of C2J can then be written aa the ratio of a 

. J J» «ad a (2"2) deteralnant. 

(9) 

1 *, ». / 
V*, 

l*xb/«ab) - -K v*. 0-A, 
/ 

-«' ».-*. V*. / VA, 

0-A 

vs 
(10) 

the reader can eaally verify.    Clearly the combination 

b  ♦! b    haa the corre«pondln9 deterwinant reprenentation 
».^•-i -I". 

e^Ojb.^o.b,« 

•l   -• 

-o,  B.-A, 

A 

0-A, 

VA» 

VA» 

D,-A. 

0-A 

vA
? 

(11) 

The numerator of (2) hae the form (using 4) 
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a -f xa + x2a + x'a^ + x^a 

(A0 + XA, + x2A2 + xJA3 + x^J 

+ b, {xAo ♦ x^, + x3A2 + x'A^ 

♦ b2(x2A0 + x'A, + x^A ) 

Hence 

F2(x) - [4,2] 

oAjx 

•x2i:2A xj o 3 

-v« 

A3 A. 

Bo-A2 
O-A, 

B.-A, U2-A2 

A3 A. 

Bo-A2 
0-A3 

»i-^i B
2-
A
2 

(12) 

When n - 3, the basic equation for the determination 

of the b's as a ratio of two determinants follow from (3) with 

b = b  ... =0.  And (7): 

a5 » A2b3 + A3b2 + h%bl  *  A5 - B b 
O 3 (13a) 

t, = A1b3 + A2b2 + A3bi + hH   .   Dob? + nib3 (13b) 

a3 ■ Aob3 + *i*>t   +  A2b1 + A3 = B^j + ü1b2 + U?b3   (13c) 

Once the b's are written as a ratio of determinants, the same 

can be done for the denominator of (2) when n = 3.  Finally, 

FJ(x) is easily shown to have the form 
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II 

r  (x) ■ (rJ»Ji ■ 

es,, -xsH, -x^;,, -xj^) 

(1, -x, -x^, -x') 

where we define Sn = t^ ^d 

(a^a^ütj.a,) ■ 
a. 

a. 

B0-A2 

B -A. 

0-A, 

B0-A2 

B -A, 
i  i 

5 

0-A, 

O-Aj 

B -A 
o  2 

(I4.i) 

(14b) 

Also, 

F (x) • 16,41 

(S6, -XS5, -x'S.., -x^S^ -x-S2) 

(1, -x, -x2, -x3, -xM 

(Oj , . • • »a5^  ' 

Bo-A2 

B1-A1 

B2-
Ao 

B^O 

0-A. 

B0-A2 

Bj-A, 

0-Av 

O-A 

D0-A2 

Bl-Al 

(15a) 

s 

'6 

0-A 

0-Al 

0-A 

•ö-*. 

(15b) 

^ anv F (x) is obvious.  Similar expressions 
The generalization to any FnW 

«4n«- P*d4 approximants for In+u.nl. 
exist for two point Paoe appt" 
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Appendix II 

Integration of d2E„/dr2     G' 

In this appe^Ji^ we are concerned with the integration 

of expressions (with x = r ^ and b = 1) such as 

H2Tf (n) y .,.,2 a E^, /dr' ■ x '(Tv^dv1) (1) 

The basic integrals required are 

VI) - /x-m dx/(l+x) 

Note that 

I0(l) - log(l+x);  1,(1) - log(x/(l+x)] 

I, (1) » -x-1 - log(x/(l+x)J 

while 

"m + V» " /^"m ♦ x-m+,)dx/(l+x) « Ox-(m-lV(in-l), 

^ * (W1
)-(Im-i-Im-2

, + ---^-l),n(I2+I1)-(-l)
mI1 

m- i 

S'l 
(-l)^ss-'x-8 - (-l)mlog(x/(l+x)] 

Furthermore, 

Vy) : /x"m dx/(x+y) 

y-n,{(-l),n4,logIx/(y+x))/[
,(-i)^(y/x)S/si 

s-i 
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The quantities [g^x)]"1 I (1+bjX + ... + bnx )"1 

in Eq. (1) have the following partial fraction representations 

for n = 2,3,4 respectively: 

b-'tKx-a^A^r1 + Kx-a^^,)-1}; &4j I a.-ot. Oa) 

b-1{[(x-a1)A12A13]-
l+[(x-a,)A21A23]-

,+[(x-a3)A31A32]-
1}     (3b) 

b^iKx-a^A^A^A, J-1 + ... + [(x-aJA^A^A^]"1}        (3c) 

The (a.) for a given n are the roots of g^a) ■ 0' 

Since dE„/dr > 0 as rD -> ", the integration of (1) 
G'   S S 

form r to o» yields, employing (2) and (3), 

/ x n+2   J7 m(
r'"a2)   J7-m(r'"a2) 

"5 S TTTT m nz   n,n-i 

if n > 4, where 

J (r,-a) - -a-k loglrV (r^-a) ] + TP" ^"V?/2    (5) 

This function is easily integrated and the constant of inte- 

gration can be chosen so that the integral vanishes as r > ^ 

as is required by our problem.  If a is real and positive, and 

r*1 < 0, the term (r^-a) should be written as |e*-ö|.  The form 

of the integral when k > 4 is 
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k;1 aP"kr1',,*>    k   i-k 

♦ (S)uJ'k ♦ a'k(r-ua)logl(r,,-a)/r,,l      (6a) 

When k « 2 and 3, the term expressed as a sum over p is omitted, 

and when k ■ 1, 

F^r^-o) - oT'Ur^-a2 log r1** (r-o1) logl (r^-a)/^])  (6b) 

Again, when a is real and positive and r^ < a, the terms (r^-u) 

in (6a) and (6b) should be replaced by |r^-a|.  The final ex- 

pression for E(i
n) (r8) is 

E^Nr ) - (2/b)  [ aD^hr) (7a) G   s       n _*•  m 7-m s m"0 

D(u)lr)       ^(r,-«,)    
Fk<r>-a,>  .   ,  Fk(r>-an)     (7b) 

Dk  (r) - A. ...A. * A A ...A ' *'"*  A ...An n    
nb) 

12   in 2i 2i   2n       m   n,n-i 

Several technical points are to be observed in the 

application of these formulae.  First, various symmetrical 

functions of the roots a. of gn(a) * 0 occur naturally.  For 

example, 

al+QL2 + ...+<xn  - -bj/b^- a1a2...an « (-l)n/bn, etc.   (8) 

A recurrence formula exists for the combination 

A(
n)     "'    +    ,     Un        , (9ü) 
-3    AW-A£n   "*   Ani---An,n-i 
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.. 

This is «asily deduced from the relation 

a'i - -b.a'^1 -b.a-^1 ... -b a'^ (10) 

When n ■ 2,i,i  the initial value« to l>e used with (9b) uru# 

respectively, 

6ot)  " 0'   6-\)  " "bi Ula, 

!«•! . |jO . o,   ijj' - -b, (lib) 

«<*> . «<*> . «^> - o,   lij' - HI, (HO 

In the case in which one pair of roots, say a| « -a+ib 

and a2 > -1-ib are complex, one notes that 

lostr^a-ib) - «ilogMa-MrV+b'J - i tan-1 lb/(a♦r,,)) (12) 

Through the appropriate combinations of a, and a1 which appear 

in our problem, no imaginary terms appear in final formulae 

for si •  Finally, some care has to be taken in the integration 

which yields logarithms when a given a. is real and positive. 

However, the angularity at a. leads to no difficulty in per- 

forming the required integrations.  As was stated earlier in 

this case, the logarithm terms in (6) are to be replaced by 

logllr^-al/rV 
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A RIGID-PLASTIC MODEL OF SPALL 

FRACTURE BY HOLE GROWTH 

F. A. McClintock 

Abstract 

A numerical procedure is formulated for calculating 

spall fracture by hole growth, as approximated by the spherical 

growth of holes in rigid-plastic material.  An order-of-magnitude 

estimate indicates that inertia effects are more important than 

rate effects and that this model is likely to be appropriate for 

6061-T6 aluminum alloy at stresses up to twice the static 

»'      strength. 
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A RIGID-PLASTIC MODEL OF SPALL 

FRACTURE BY HOLE GROWTH 

F. A. McClintock 

Introduction 

in some metals, including 6061-T6 aluminum alloy, spall 

fracture occurs by the growth and coalescence of holes.  This 

mode is shown by both scanning electron micrographs (Joyce et al., 

1968) and metallographic cross-sections obtained by Viola (see 

McClintock et al., 1968).  Furthermore, the sides of the growing 

holes are so smooth, even though curved, that it seems relevant 

to calculate the hole growth from continuum mechanics, starting 

from some initial array of holes.  Under dynamic loading the 

resulting calculations of elastic-plastic wave interactions 

require detailed numerical methods and computer times of the 

order of hours.  An approximate analysis is therefore desirable 

as a first step in investigating the generalized empirical 

fracture criterion of Tuler and Butcher (1968).  This criterion 

predicts that fracture occurs at a stress o and a time ^ when 

(o-ün)
Xdi - I (1) 

The object of the present analysis is to test the form of the 

above relation and to propose another or to derive the magnitudes 
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of the constants a   ,   X,   and K from metallographic data on hole 

size and spacings, as well as the stress-strain behavior. 

Conceivably the time dependence of the fracture criterion 

(1)  could be due to strain rate effects.  Typically reported 

values for the exponent ^  are of the order of 2 which would 

require a much greater strain rate effect than is normally ob- 

served.  It seems more likely that the time dependence arises 

from inertia effects on the stress distribution around the 

growing holes.  If so, the limit load calculations are not 

applicable. 

For very high stress levels, elastic strains will be 

important. At a somewhat lower stress level, not only will the 

elastic strains be relatively unimportant but also there will be 

sufficient time before fracture for the elastic stress waves to 

run back and forth, giving a quasi-static stress distribution 

from the elastic point of view.  We therefore consider a rigid- 

plastic material with inertia terms in the equilibrium equations. 

For a first approximation neglect strain hardening. 

Consider layers of holes normal to the direction of wave motion 

as shown in Figire 1.  Interactions between the holes in a 

layer will make each hole behave as if it were in a cylindrical 

tube of constant cross-section with zero shear stress.  Such 

boundary conditions would give a two or three dimensional problem 

in plasticity.  For simplicity it is desirable to assume spherical 

growth of the holes, as also appears justified from the metallo- 

graphic cross-sections.  The question then arises as to what 
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boundary condition, on the out.id, of th, .ph.r.. would pUu.lb.y 

simulate the actual problem. The applied load con.l.t. of plane 

waves traver.ing the layer, of holes.  *. the hole. 9ro« and 

make a «iven layer poroua, there are al.o unloadin, wave, which 

affect neighborin, layer..  i„ other word., the decr.a.e .n 

traction exerted by the net are. of on. l.y.r win appear a. an 

unloading wave at another layer at a time later by an amount of 

the order of the di.tanc. tr.velled divided by the velocity of 

an elastic wave.  (Thi. .ppear. to be the on. point .t which 

the elastic wave velocity .hould .pp..r.) 

Finally, fracture occur, when th. radiu. of th. hoi. 

becomes approximately th. initial half-di.t.nc. b.t«..n hoi... 

R.  m a .pherical .hell the boundary condition, would be „ow 

applied at the somewhat greater curr.nt external radiu. .nd 

fracture would not yet have occurred,  m th- actual c.e of 

course, material i. fxowing axi.lly, „onsal to th. .pan „.„„,  ' 

so the approximation of fracture when I . a should be reasonab.e. 

Analysis 

The initiai and boundary conditions sre indicated for 

a simple case in Figure 2, in which the positions of v.rlou. 

layers of holes are plotted versus time. For convenience w. 

speak of a row of holes rather than a s.ries of layer., 

mitially, pcitive or negative pul.es ä„p, ^ are .peclfj#d# 

according to the direction of travel along the row.  .„ th. 

diagram, they travel to the right diagonally upward, or do.n- 
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u 
«•rds, rvspectivoly. Th« units of tiaa «r« th« tvvl tkm  of 

« w«vo with velocity £ «cross th« h«lf-sp«cin9 | of th« hol««, 

At * */c'    Initi«! v«lu«s of th« «ppliPd «trsss R on « sphsrie«! 

■h«U of ouior r«dlus £ «r« 9iv«n «t on« tin« unit twfor* th« 

beginning of th« actual cslouUtlon.  Inltisl vsluos of th« 

hoi« radius s sr« «iv«n just st th« stsrt of th« cslcuistion. 

Th«r« is s possibility thst stross pulsss will «iit«r th« fi«ld 

of int«r«st st Istsr tiass, so Äo aust b« d«fin«d b«low th« 

lowor row of hol«s snd 4on sbov« th« upp«r. Th« nor««lit«d 

ti**s i Äl which th«s« initisl conditions sr« to b« s«t sr« 

d«tomin«d fro» th« Istsr discrotisstion of th« «qu«tions. 

U Oiv«ni   s(3,J)   J . 2,  J^-» 

ofcC2,J)   J - 2. j.  -• 

V1'**' *0na'^   ) - 2. J-..- iU} 

4opCi,l).  %Ci.J|l|U|) 1 - I,  l^-l by a«,. 

In addition to th« initisl conditions to b« r««d in, it 

turns out to bo n«c«sssry to sst to tsro ths initisl rsdisl 

vslocity of th« hol«, «, th« initisl rsdisl sccsUrstion of th« 

hoi«, I, snd th« unlosding wsv« fro« prior hoi« growth, 6o . 

i(3.J) -0    j . 2, J^-' 

l(2,j) -0    j . a, jy^-l (2b) 

««VM) -o  i . a, W-. 

The main computational loop, carrlsd out for «ach tlmr 

stsp ai and hoi« position j,, is now bsgun.  first, tho radial 
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velocity of ih. hol« at th. middlm ot  th« nmnt tlm  ttap it 

estiPMt«d fro« th« prior «oo«Ur«tion. for brevity, whm J 

is constant in sn squstion. <l»not« sd.j) by v for «»MpU. 

•4 " V.« ♦ h-i  4t- (J) 

If tlM hoU» sppssr to b« shrinking thoir voloctty i« ««t to 

loro. Utor s chsck will bo «sdo to inauro that the yi«id 

strength in co^prossion hss not boon •xc««d«*d. 

As sftor all further cslculstions of th« hole radius a 

chock AS oad« to inaur« that fractur« has not yet occurrad in 

th« sons« that 

Most th« hoi« radius is ostloatad fro« th« v«Jocitl«s 

•i • ai-, * ^i-, ♦ V«t. (4) 

As sftsr all furthar calculations of hoi« growth, s ch«ck is 

•ad« that frsctur« has not yat occurr«d in tho sens« that 

a - ».  Xf a 2 R^ th« program is t«nninat«d. 

Now calculst« th« strsss pulsss that will chang« the 

sppli«d sftrsss at R. As indlcstad in Pig. 3, an incoming 

plastic Strass puls« will be partly reflected by a hole.  For 

conservation of momuntum tho fraction transmitted must ho 

unity - the fraction reflected as a negative wave.  Tlu. fraction 

transmitted is assumed to b« proportional, with tho UetOf i< 

to tho area fraction of tho holes in that layer, assuming llZ 
holes in a squaro array: 
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Tr -  1  - V«'/*'. (5) 

mm potitlv«- and neqatlve-travelling waves can now bo calculated: 

«Op(l,j)   - Tr  4op(i-2,   J-l)   *   (l-Tr)6on(i-2,   j + l) ^ 

6on(i.J)   -   (1-Tr)   6op(l-2,   J-l)   • Tr  6on(i-2,   j + D. 

It would aoem that in «oroo way a loss term due to radial dis- 

persion of waves in the plastically deforminc} field should be 

taken into account, but that will be left as a matter for future 

work.  Next calculate the current stress in the element due to 

the pulses that have just passed it.  In addition there will be 

a stress pulse due to the previous growth of holes which, it 

turns out, is most easily and accurately calculated at odd 

intervals of time.  For instance, the hole growth at time 6t 

U      will radiate out to the radius R at time 26t and the effect will 

reenter the hole at time lit, so it is included in the calculation 

at this time: 
> • 

oR(i,j) - oR(i-2,j)+6ap(i,j)+6on(i,j)+6ög(i-3,j)     (7) 

U Next check that the resulting radial stress is greater (less 

negative) than that required for compressive yielding from a 

static condition: 

fl 
aD - 2Y iln(a/R) 

(8) 

If the static compressive strength is exceeded, the calculation 

is stopped. 
I) 
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The stress-acceleration relation for a rigid-plastic 

spherical shell of non-hardening material with yield strength 

Y is given by Hopkins (1960).  For a material with density p, 

hole radius a, hole velocity k,   acceleration ä, and with zero 

applied stress at the surface of the hole, the radial stress 

or at the radius r of the hole is 

• - 

ar = p(äa+2A
2) (1-a/r) - ^§-(1-U/rP)+2Y £n(r/a) .   (9) 

The acceleration can be found from Eq. 9 in terms of the radial 

stress aR at R.,  In this and subsequent equations it is con- 

venient to normalize distance in terms of R, velocity fcy the 

uniaxial strain wave velocity c, time by R/c, and stress by 

pc2, which is the modulus of elasticity for one component of 

normal strain alone.  The normalized acceleration of the hole 

is then 

(10) f ={!}£■ + Hi ^ I ^ |i(l-<a/r,>|]/(1-a/R, - tyft. 
Because Eq. 10 involves the radius and radial velocity, 

which in turn depends on the acceleration, Eqs. 3, 4 and 10 

must be solved iteratively.  kmax iterations will be carried 

out.  The first step is to integrate to determine the velocity 

from a modified form of Eq. 3, but assuming a step change in 

acceleration at i - 1, and a constant acceleration until i: 

k.   - a.^ ♦ ä. 6t. (11) 
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Once again, if the hole appears to be shrinking, make it rigid 

and set the acceleration to zero.  Next, for calculating the 

hole radius, Eq. 4 still applies and can be stated as 

ai " ai-. + H-i   ^ + ^ ä. 6t2. (12) 

With the improved estimates of hole radius and rate, return to 

Eq. 10 for another iteration, until Eqs. 10 through 12 have 

been evaluated kmax times.  After calculating the radius, check 

for fracture as before. 

As a matter of interest, estimate the mean traction 

carried across a section containing the hole.  If the holes have 

neither velocity nor acceleration, the mean traction would be 

the same as aR.  With a growing hole, however, the two tractions 

will bo different.  As long as the hole is growing, 

6    r (13) 

Substitution of Eq. 13 into Eq. 9, integration, dividing by 

the cross sectional area uR' to get the stress, and normalizing 

yield 

(Vav 

■(#i^](1-r+(r(1-(ijT/-^-i pcT   (c' I ■ ^TJi-Rj - (öj nsj J /2 - ^T ^      (14) 

An estimate of the unloading pulses due to hole growth 

can be made from the volumetric rate of hole growth, assuming 
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that an increment in voiumetric rate V divided by  tho cro.s 

sectional area give. ri.e to a uniaxial  veiocity  increment «V 

in either direction: 

>Sv =  J,  6V/7TR2   .  -1      giv I^    d?f4na1]. 

iv 
US) 

Tho velocity increment 6v in a medium with a modulus for uni- 

axial normal strain ot Ec . ^  produce. „ unloadin9 wave 

magnitude -60 : 
9 

■6oa " Ecöv/C " Pc6v 9   C (16) 

Combining Eqs. 15 and 16 and normalizing gives 

R7? (17) ^-[(il^l-Kf)^ 
in preparation for the next time step, calculate for 

the hole rate and radius of the followin, odd interval of time 

-in, N.. „ and M with m  sub3tituted (or ^  ^^^ ^^ 

are made that tha holes do not appear to be shrink, and that 

they have not yet grown to fracture. 

With the calculation completed for hole | at time i., 

attention is directed to hole U^ and so 0n to .    . 

which Um  the time index is incremented by 2  intervals, |<, 

= 2R/c. 
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The Fortran computer program is listed In the Appendix. 

Output consists of hole radius a and applied stress uR for 

each hole at each interval of time step 2R/c.  If desired, a 

complete set of output data is available. 

Elastic Effects in Slow Expansion of Spherical Holes 

As one indication of the range of validity of the pre- 

ceding analysis, consider the stress levels required for slow 

expansion of spherical holes in the absence of inertia terms, 

but taking elasticity into account.  Hill (1950) gives the 

following equation for the radial stress required to expand 

infinitesimal holes in a non-hardening elastic-plastic material 

with modulus of elasticity E and yield strength Y: 

-^ - (1 + An(E/1.5 Y)]/1.5 (18) 

Values of 6R/y are presented in Table 1 for a variety of values 

of Y/E.  In a rigid-plastic continuum, an infinite stress would 

be required to expand infinitesimal holeu (a/R -* 0) .  Therefore, 

the rigid-plastic analysis becomes invalid when the holes are 

small enough so that the applied stress oR required to expand 

the holes according to Eq. 8 exceeds that to expand infinitesimal 

holes in an elastic medium, given by Eq. 18.  Limiting values 

of a/R according to this criterion are given in Table 1.  For a 

hole ratio of 0.2 the calculations might be valid to Y/E = 0.008, 

which represents fairly high strength aluminum, titanium or steel 
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alloys, whereas for a hole radius ratio of 0.1 only relatively 

soft materials with Y/E - 0.001 to possibly 0.002 can be cal- U 

culated. 

Order-Of-MaqnitJde Estimate of Inertia 

For 6061-T6 aluminum alloy, taking a/R = 0.1 to 0.2 and 

a yield strength Y of 4 x io' dyno/cm2 gives a static strength 

of 13 to 18 x 10' dyne/cm2.  Consider an applied stress of, say, 

double this value.  From Eq. 14, at high velocities most of the 

stress will be used in maintaining a velocity rather than in 

further acceleration.  Then from the first term of Eq. 14, with 

pc2 = IO12 dyne/cm2, c = 0.6 x 10« cm/sec, taking a mean value 

of a/R ■ \  during growth, 

The fracture time is then of the order of R/k  = R/0.1 c.  For 

R - 10"J cm, the time is then 

k     _     1Q"3 ,. = 1.6 < 10~8 sec. (20) tf   -   (0.1) (0.6*100 

Thi.. is of the order of that observed by Viola in shot 9 30. 

Qrder-Of-Magnitude Estimate of Strain Uati- Effect 

6061-T6 alloy exhibits almost negligibly small strain 

rate effect under ordinary conditions.  Here, let us assume a 

power law relation a = a.U/c.r, with m = 1/60 to 1/120 for 
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steels and brass (MacGregor and Fisher, 1945).  The strain rates 

of the order of unity in 10"8 sec. instead of 103 sec, correspond 

to a rise in stress by a factor of 

10ll/(60 to 120) . 1#5 to li24 

Thus strain rate effects may in some metals be comparable to 

inertia effects.* 
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TABLE 1 

. 

u 

ü 

D 
0 
Ö 

0 
n 

Stress Ratios for Static Expansion of Holes in 
an Infinite Elastic-Plastic Medium and in a 

Finite Rigid-Plastic Medium 

Infinite Elastic-Plastic Medium, from Eq. 18 

Y/E     0.001    0.002     0.003    0.008 

a-/Y    5.00     4.53      4.07     3.61 
R 

Finite Rigid-Plastic Medium, from Eq. 8 

a/R     0.2      0.1 0.05     0.025 

On/Y    3.22     4.61 5.99     7.38 
R 
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Figure 1:  Approximation of spall by growing spherical holes 
of internal radius a and external radius R. 
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SD EFFECT 

D. C. Drucker 

Abstract 

The distinction between true and apparent strength- 

differential (SD) effects must be sharpened and definitive 

experiments performed to evaluate recent data and place 

plasticity theory in proper context. 
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SD EFFECT 

D. C. Drucker 

Additional attention has been devoted, with Morris 

Cohen and John Hirth, to ever increasing reports of a yield 

and flow strength differential (SD) for martensitic steels 

and other materials with the stress-strain curve for simple 

compression significantly above the curve for simple tension. 

A difference between the yield strength in tension 

and compression can result from a wide variety of causes and 

be strongly dependent on the offset chosen to define yield. 

Prior deformations, or phase changes, or differential temper- 

ature contractions may produce large residual stresses on a 

macroscopic or on a dislocation scale or both which favor 

shear in one direction over its reverse.  Microcracks or de- 

cohesion between particles and matrix favor tension yielding 

over compressive while Bauschinger and allied effects can go 

either way.  Residual effects tend to decrease w.rth increasing 

plastic strain and decreasing plastic modulus.  Void opening 

should lead to an increasing SD with plastic straining. 

SD may be thought of simply as the difference between 

the magnitude of the yield strength in compression and in 

tension, but the physical effect most authors seem to wish to 

.. 
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describe is the effect of hydrostatic pressure on the flow 

strength xn shear, on effect examined experimentally by 

Bridgman some years ago and Rauch, et al recently.  The 

customary assumption, based on Bridgman's results primarily, 

is that the SD is negligible in the range of hydrostatic 

pressure of i   the yield strength,  yet Rauch, et al report 

an enormous influence of hydrostatic pressure on martensitic 

steel. 

Chait reports a small but not negligible SD effect 

(10% or so) which agrees with Rauch and Leslie.  Olsen and 

Ansell give results for TD-Nickel, and Rari and Gibal« for 

niobium with dissolved oxygen, all of which reopen the 

question. 

Except for the remarkable and totally surprising 

direct observation by Rauch, et al that the addition of 

somewhat over 100,000 psi hydrostatic pressure raised the 

magnicude of the compressive yield strength and flow curve 

by almost 100,000 psi, most comparisons are of the flow curves 

in simple tension and compression.  True SD effects are dis- 

tinguished in the literature from apparent by their persistence 

as plastic strain increases well beyond the 0.002 plastic 

strain offset which arbitrarily defined yield strength.  Re- 

sidual stress effects are uniformly described as apparent 

rather than true SD. 

An attempt will be made to sharpen the distinction 

between true and apparent SD, to indicate effects which lead 
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to some confusion, to describe the severe limitations on 

behavior imposed by conventional plasticity theory of both 

the simple and complex work-hardening variety, and to suggest 

some more definitive experiments in both the elastic and 

plastic domain.  Although the giant SD effects reported by 

Rauch, et al can be brought within the framework of plasticity 

theory, every indication is that the results of experiments 

not yet run will limit those true SD effects which lie w'thin 

plasticity theory to the far more moderate range reported by 

Rauch and Leslie and confirmed by Chait (say 20,000 psi for a 

250,000 psi yield strength steel). 
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ENERGY TO CREATE NEW SURFACE 

DURING CRACK PROPAGATION 

D. C. Drucker 

Abstract 

An understanding of the effect of microstructural 

and atomic features and properties along with the influence 

of corrosive and other environments depends critically on 

the energy needed to create new surface, an energy which is 

neither the thermodynamic equilibrium surface energy nor 

the energy needed to deform bulk material. 
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ENERGY TO CREATE NEW SURFACE 

DURING CRACK PROPAGATION 

D. C. Drucker 

An incisive experimental determination of the likeli- 

hood of brittle or quasi-brittle crack initiation and propa- 

gation in the prototype requires a duplication of the local 

conditions of stress and strain history in a test specimen. 

This enormously complicated problem in mechanics of continua 

reduces in the case of small sca^e yielding (plastic zones 

of small size constrained by alastic surroundings which follow 

a fully linear elastic solution) to duplication of the appro- 

priate K values.  A remarkably simple result and a startling 

achievement of continuum mechanics at a fundamental level, it 

docs bring order out of chaos when followed in studies of 

crack propagation in beneficial, neutral, and adverse environ- 

ments. 

However, the very simplicity and generality of the 

requirement that the appropriate K be matched leaves completely 

open the details of the process of separation as the crack ex- 

tends.  In an energy balance calculation based upon experimental 

results for crack propagation, the term which appears as surface 

energy depends strongly upon the method of calculation of the 

rk of tho applied forces, the strain energy stoi ci, and Uu wo 
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energy dissipated and radiated away as kinetic energy.  Yet. 

an understanding of the effect of microstructural and atomic 

features and properties along with the influence of corrosive 

and other environments depends critically on the ability to 

compute the actual energy needed to create new surface sepa- 

rately from the energy required for deformation of the bulk 

of the material around the crack txp.  Thermodynamio equilibrium 

surface energy clearly is a lower bound and an excellent approxi- 

mation when sufficient thermal energy is available W overcome 

the activation energy barrier to forming new surface.  In 

general, however, this will not be so as Robb Thomson has shown 

for a simplified picture of atomic separation at a crack tip. 

Energy lost through radiated kinetic energy or inelastic de- 

formation in the immediate region of the surface of separation 

can be many times larger than the equilibrium surface energy. 

This is a genuine energy to create new surface and is not to 

be confused with the often far greater amount of energy dissipated 

in the plastic zone around the crack tip associated with the 

stable continuum behavior.  As Jim Rice has emphasized earlier, 

the genuine energy to create surface governs.  When it reduces 

to zero a sharp crack runs at zero applied load. 

instability of the local force-separation relations 

leads to the running crack.  How the unstable portions of the 

force-separation relations alter with microstructure, atomic 

structure, and environment warrants intensive additional study 

■ 

■ 
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at both the atomic a„d mlcro,tructur.l level to pern.it reUable 

prediction in advance of tests. 
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ON THE CHARACTERISTICS OF GRADIENT MATERIALS 

M. B. Bever 

Abstract 

Materials with compositional and structural gradients 

arc of theoretical and practical interest.  Such materials 

have been widely used and probably will find new applications. 

Thir, memorandum deals with the general characteristics of 

gradients in metallic, ceramic, polymeric, composite and complex 

materials.  The mathematical analysis of gradients and the 

systematic consideration of the effects of gradients on proper- 

ties will be the subjects of later memoranda. 
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ON THE CHARACTERISTICS OF GRADIENT MATERIALS 

M. B. Bever 

1.    Introduction 

Materials with compositional or structural gradients have 

been widely used in the past. They probably will find many new 

applications in the future. These materials, however, have not 

been systematically investigated and analyzed. This memorandum 

will deal with the general characteristics of gradient materials 

and will also briefly consider the effects of gradients on some 

properties. The mathematical analysis of gradients and the de- 

tailed consideration of their effects on properties will be the 

subjects of subsequent memoranda. 

Gradient structures are found in metals and alloys, 

ceramics, polymers, composites and complex materials.  Among 

the oldest examples of gradient materials are surface hardened 

steels1'2.  Steels can be surface hardened by various methods, 

but they all have transition zones or gradients between the 

hard but brittle surface layer and the softer but tough interior. 

A recent application of the gradient principle is repre- 

sented by graded cermets which combine a ceramic and a metal. 

Such cermets have been proposed for jet engine parts3'M and are 

being considered for armor5»6.  Some other gradient materials 

are graded seals, which serve as a transition between glass and 
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metal or between two different glasses, and tempered glasses 

in which compressive stresses are present in the surface layer. 
i 

Polymeric materials may have many different kinds of 

gradients'.  In one proposed application the values of the 

uiastic moduli change continuously with location in the polymer; 

such a gradient should make it possible to combine a soft layer, 

which is compatible with natural tissue, and a hard layer, which 

can be anchored to a strong material". 

Many different types of gradient structures can occur in 

composite and other complex materials9.  Gradient structures are 

also found in nature, especially in biological and geological 

materials. 

The essential characteristic of a gradient material is 

the spatial variation of a compositional or structural feature. 

"GradienL materials" must be distinguished from other inhomo- 

genoous materials.  In a gradient material, a single inhomo- 

gnneity occurs on essentially a macroscopic or global scale. 

Thil criterion separates gradient materials from the products 

of spinodal decomposition, in which numerous concentration 

gradients are present on a fine scale.  Another criterion of a 

gradient material is that the inhomogeneity must be gradual - a 

[       sharp discontinuity is an interface rather than a gradient. 

The criteria of scale and continuity are relative and deserve 
mm 

further consideration.  In summary a gradient material may be 

defined as B material in which a compositional or structural 

feature changes continuously in space on a macroscopic scale. 
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A gradient can serve different functions.  At one extreme-, 

the gradient region provides a transition between two materials 

or components; the gradient is merely incidental to the combination 

and constitutes a necessary compromise.  At the other extreme, 

the gradient region provides a desirable spatial variation in 

properties.  Transitions between the two extremes are possible. 

The features which may have gradients are not necessarily 

the same in metallic, ceramic, polymeric, composite and complex 

materials.  Gradients characteristic of 'hese major classes of 

materials will now be considered. 

2.     Gradients in Metals and Alloys 

2.1    Single-Phase Metals and Alloys 

Single-phase metallic systems may have gradients in their 

composition, microstructure, crystal orientation (texture) and 

internal stresses.  Composition gradients may occur in sclid 

solution alloys.  For example, a surface lay^r may differ in 

composition from the bulk metal; such a material may be espec- 

ially resistant to corrosion or to high-temporature oxidation. 

Nabarro has postulated a gradient of the concentration of inter- 

stitial solute atoms, which has theoretical interest1 . 

The grain size is the most important microstructural 

feature of a single-phase metal in which a gradient !■ possible. 

Such a gradient can be produced by differential mechanical or 

thermal treatments or by suitable alloying (including the form- 

ation of a minute amount of a second phase).  A grain size I 

I 
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■ndleat results in gradients of properties, especially meohanical 
properties. 

Gradients m grain shape and in grain shape anisotropy 

can be conceived; their effects probably would be subtle. 

Gradients in crystal orientation - both in the type and intensity 

or a preferred orientation or texture - are possible11.  They 

will be associated with gradients in the anisotropy of some 

local properties such as the elastic properties in cubic metals 

and also the thermal expansion and electrical conductivities in 

noncubic metals.  Gradients in preferred orientation, however, 

would be difficult to produce12. 

Internal stresses are a special kind of structural feature. 

They may have macroscopic gradients.  For example, compressive 

stresses can be introduced at the surface of single-phase metals 

an-: alloys by surface working processes; these stresses are 

necessarily balanced by subsurface tensile stresses, thus in- 

volving gradients. 

2.2    Multiphase Metals and Alloys 

The structure of a multiphase metal or alloy depends on 

the volume fractions of the constituent phases and the configura- 

tion of these phases, especially their microstructural and 

crystalloyraphic arrangements.  Three major types of micro- 

structutal arrangements can occur: 

(i) one continuous and one (or more) dispersed phase (s), 

that ia a matrix and dispersed phase; in such an arrangement 

cither the major or the minor phase may be continuous; 
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(ii) two (or more) discontinuous phases arranged in a 

mixed grain structure or a lamellar structure; 

(iii) two (or more) continuous and interpenetrating 

phases; in such an arrangement each phase has a high connectivity. 

Each of these types affords the possibility of structural 

gradients. 

Matrix and Dispersed Phase - if the matrix is the major 

phase, it displays most of the characteristics of a typical 

single-phase polycrystalline metal.  In principle it can, there- 

fore, have the gradients in composition, microstructurc, crystal 

orientation and internal stresses discussed in 2.1 above. 

The characteristics of the dispersed phase (or phases) 

which may have gradients are the volume fraction and the size, 

shape and orientation of the particles of the dispersed phase. 

A gradient in the volume fraction can result from either a 

gradient in the initial composition of the parent phase or from 

a differentia] thermal treatment which produces a gradient in 

the nature of the precipitation reaction.  An interesting 

possibility is the preferential stimulation of precipitation in 

a surface layer by surface working. 

Gradients in the size of the dispersed particles can be 

produced by suitable gradients in composition or suitable thermal 

treatments such as a temperature differential causing differences 

in space of the rates of nucleation and growth of the precipitate. 

Since little work appears to have been done in exploring such 

possibilities, opportunities for development probably exist. 
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Gradients in particle shape, particle shapo anisotropy and 

crystallographic orientation of dispersed particles suggest 

lliLMnselve.s, but would probably be difficult to produce. 

Mixed-Grain Structures - Such structures occur in two- 

phaso regions such as the (o + ß) region in the copper-zinc 

system.  Gradients of the grain sizes of the two phases and 

perhaps also of their mutual arrangement are possibli. 

LameJiar Structures - Lamellar structures have been in- 

vestigated extensively because of their role in pearlitic steels 

and some eutectic systems.  The degree of fineness of the 

lamellae and the size of the pearlite colonies can probably be 

changed with position, but such gradients do not seem to have 

been investigated.  Their investigation should be undertaken. 

Continuous Interconnected Phases - Gradients in the 

composition and scale of the interconnected phases appear to be 

possible in these structures. 

Examples from the Metallurgy of Steels - The quench- 

hardening of steel presents a classical example of a gradient 

structure.  If a steel part is cooled at a rate not sufficiently 

fast to yield martensite throughout, pearlite forms in the in- 

terior and in an intermediate zone pearlite and martensite form 

as ■ mixture; this results in a gradient from an all-martensitic 

to an all-pearlitic structure.  The phenomena are well understood 

and pertinent tests have been developed.  Parts with martensite- 

pearlite gradients can be used in technical applications. 

The metallurgy of steels suggests the possibility of 
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producing structural gradients by a unique mechanism: since the 

decomposition of austenite and ehe resulting structure are 

affected by the grain size of the austenite, the decomposition 

products will have gradients if the austenite has a grain size 

gradient.  Experimental work on this subject seems to be de- 

sirable. 

The properties of a quench-hardened (martensitic) steel 

are modified by tempering (holding at relatively low temperatures). 

Tempering in a temperature gradient may be expected to produce 

gradients in the structure and properties of the steel.  The low 

temperatures involved would make the control of such a dif- 

ferential procedure relatively easy. 

Various heat treatments and thermomechanical treatments 

of plain carbon and alloy steels such as austempeiing, mar- 

tempering and ausforming provide opportunities for producing 

other gradient structures. 

in the case hardening of steel by carburizing, '.I»a carbon 

is supplied to a surface layer.  The steel, therefore, can form 

effective martensite only in this layer1'2.  The transition 

from ♦■he high-carbon case to the low-carbon core is relatively 

steep.  Troiano and coworkers'3''^ have shown that the resulting 

abrupt change in local properties causes a "metallurgical notch" 

at the interface and hence a susceptibility to fracture initi- 

ation.  The obvious solution is a more gradual transition due 

to a less steep carbon gradient, but such a gradient appears to 

be difficult, if not impossible, to produce. 
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In case hardening o'  oteel hy  nitriaing, the hardness 

of the case results from the precipitation of alloy nitrides 

and decreases gradually at the bottom of the nitrided layer1''. 

While this gradual decrease has been deplored because it tends 

to reduce the case depth and hardness at the surface, it  probably 

improves the mechanical behavior of nitrided steels by reducin-, 

the notch effect present in carburiZed steel.  Induction hardened 

and flame hardened steels provide the possibility of producing 

deeper cases with more extended transition zones than nitrided 

steels1^.  The characteristics and effects of the transition 

zone between case and core in carburized, nitrided, induction 

hardened and flame hardened steels merit further investigation. 

Other Metallurgical Gradi^^  -  Surface treatments can 

be applied to metals other than steels.  The protection against 

corrosion of aluminum alloys by a surface layer of pure aluminum 

is an example. 

Porosity - which is usually undesirable in metals - will 

be discussed in connection with ceramics (see Section 3).  The 

generation of compressive stresses by surface working was men- 

tioned in connection with single-phase metals (see 2.1 above). 

This process is also applicable to multiphase metals and es- 

pecially to steels. 

3«    Ceramic Materials 

The compositional and structural features which characterize 

ceramic materials may have spatial gradients.  Many of these 
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features are analogous to features which are also characteristic 

of metals and which wer.2 discussed in Section 2.  Section 3 will 

deal with features of special interest for ceramic materials. 

J, 1   SinqU'-Phaae Ceramics 

A major variable in polycrystalline single-phase ceramics 

is the grain size. This has important effects on mechanical and 

other properties of ceramics15. 

A grain size gradient has recently been observed in 

aluminum oxide ceramics: the grain size averaged about 1.6 um 

in the interior of a typical specimen and 0.8 um at the surface 

The investigator attributed the groin size gradient to an impurity 

gradient.  lie believed that the grain size gradient contributed 

to the high strength properties observed in this material. 

Porosity has been inventigated extensively in ceramic 

materials'*.  The possibility of porosity gradients obviously 

exists.  Gradients may occur in the total density (or volume) 

of the pores, the size and shape of the pores, and the degree 

of their connectivity.  An example is the open porosity deliber- 

ately introduced at the surface of certain ceramic materials which 

are being considered for use in surgical implants '' 

The chemical tempering by ion exchange provides an ox- 

ample of a gradient in a glass.  In one of several possible 

processes ions at the surface are replaced by larger ions; this 

is carried out below the annealing temperature of the glass. 

After cooling to room temperature, the concentralion ^radicnt is 

associated with a gradient in the compressivo stresses. 
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3i2   Multiphasg Ceramics 

The most common structure of multiphase ceramic materials 

is probably the dispersion of one or more phases in a matrix. 

The matrix may be a crystalline phase or a glass.  The dispersed 

particles may have a variety of shape., and different orientation 

relations.  Many possibilities exist an,] in principle each may 

yield a structural gradient. 

A matrix containing dispersed particles is not the only 

multiphase structure occurring in ceramic systems.  For example, 

spinodal decomposition may produce a structure of two inter- 

penetrating phases.  While the concentration gradients occurring 

on a microscale in a spinodal decomposition product do not qualify 

for a "gradient material'/ as discussed in the Introduction (see 

1 above), a spinodal decomposition product may have a gradient on 

a macroscale du. to a gradient in the composition or in the 

applied process variables. 

The effects of various possible arrangements of the phases 

on the properties of multiphase ceramics have been analyzed for 

several schematic arrangements.  Various mixture rules apply for 

such properties as the electrical and thermal conductivities. 

These rules can be adapted to gradient ceramic structures. 

4-    Polymeric Materials* 

The structure and properties of most polymeric materials 

can be varied over wide ranges, but to date little effort has 

*thee ^n^ntro'rsec^on ^ ™**^™  -de by M. Shen to 
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been devoted to developing gradient polymeric materials.  Forry8 

has analyzed some features of gradient polymers for biomedical 

applications.  Shen and Bover7, in a concurrent memorandum, 

consider systematically the structure and properties of polymeric 

systems susceptible to spatial gradients and discuss some potential 

applications.  The present discussion is based on their paper, 

which should be consulted for details. 

Gradients in the structure of polymeric systems may be 

generated by varying (i) the chemical nature of the monomers, 

(ii) the molecular constitution of the polymers and (iii) the 

supramolecular structure or morphology of the polymers.  Gradients 

in each of these categories are possible in single-phase as well 

as heterophase systems. 

4.1   Single-Phase Polymers 

The nature of a polymer depends first of all on the con- 

stituent monomers.  Various monomers A and B with different 

properties can be combined to form random copolymers ranging in 

composition from all A to all B.  A gradient polymer with a 

spatial variation in composition can therefore be prepared.  An 

example is the possible combination in a gradient structure of 

methyl methacrylate, which forms a tough, hard polymer, and 

methyl acrylate, a soft rubber.  Polymer chemistry offers many 

possibilities for creating similar composition gradients by 

copolymerization. 

Crosslinking is another characteristic feature of a 

polymer which can be varied.  In principle, techniques available 
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for controlling crosslinking can be adapted to producing gradients. 

Differences in the nature of the constituent monomers and 

differences in crosslinking can cause differences in equilibrium 

swelling.  This opens the way to creating gradients in the 

swelling tendency. 

The average molecular weight and the molecular weight 

distribution are other variables affecting single-phase polymers. 

Since they can be manipulated, corresponding gradients may be 

achieved.  Gradients in the degree and the direction of the 

orientation of polymers are other possibilities. 

4.2   Heterophase Polymers 

The variables discussed in the foregoing for single-phase 

systems can also yield gradients in heterophase systems.  Hetero- 

phase polymeric systems, however, offer additional possibilities 

for gradients. 

In crystalline polymers the ratio of the crystalline phase 

to the amorphous phase can be varied.  The degree of crystal]inity 
« * 

can be altered by thermal treatments.  The degree of crystallinity 

also depends on the degree of tacticity and the ratio of eis to 

trans isomers of a given polymer.  Copolymorization with an appro- 

priate comonomer is another method for changing the degree of 

crystallinity.  These methods should make it possible to ostab- 

lish gradients in the degree of crystallinity.  Gradients in the 

orientation and size of the spherulito.T appear also to be 

attainable. 

An important class of heterophase polymers can be prepared 

n 

;; 

:: 
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by mixing polymers.  Different techniques yield "polyblends", 

block copolymers and graft polymers. 

As in metals and alloys and ceramic materials, the 

morphology of hetorophase polymer mixtures depends on the amount 

and configuration of the constituent phases.  In particular, 

the matrix-dispersoid structures, the lamellar structures and the 

highly connected structures are to be considered.  (See Sub- 

section 2.2 for details.)  In polymers these configurations can 

be produced by varying the proportions of the components or the 

method of preparation.  In this way gradients in morphology can 

also be established. 

5.    Composite Materials 

The large number of compositional and structural features 

which characterize a composite material make a large number of 

gradients possible.  Bever and Duwez9 have systematically con- 

sidered these gradients and their effects on the properties of 

composites; their paper also discusses reported and potential 

applications d gradient composites. 

The gradinnts in a composite may involve the matrix or 

the reinforcing phase.  The same gradients may bo present in 

the matrix of a composite as in the matrix material in the ab- 

sence of a dispersed phase.  For example, if the matrix is a 

metallic or ceramic material, gradients may occur in the size, 

shape or orientation of the grains.  (See Sections 2 and 3). 

Polymeric matrices of composites also can have gradients (See 
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Section 4). 

Gradients may also involve the dispersed phase in a 

composite material.  We assume first that the dispersed phase 

consists of unidirectionally arranged filaments.  In this case 

the most obvious possibility is a gradient of the concentration 

(density) of filaments.  Other gradients can involve the 

orientation of the filaments and the length of discontinuous 

fibers. 

The concentration gradient may lie in a plane normal to 

the filament direction.  In a plate, such a gradient can lie in 

the plane of the plate or be normal to it.  In a rod, the con- 

centration of filaments may change in a radial direction. The 

concentration of discontinuous filaments can also change in the 

direction of the filaments. 

If a composite contains more than one type of filament 

various concentration gradients are possible.  These gradients 

may alter the ratio of the local concentrations of several types 

of filaments. 

A dispersed phase in a composite may have shapes other 

than filaments of circular cross section, such as ribbons.  In 

such a case additional possibilities of gradients involving the 

orientation of the ribbon (with respect to its width as well as 

to its length) are introduced. Similarly, gradients in a dis- 

persed phase consisting of flakes or platelets may involve 

orientation in addition to such variables as concentration, size 

and shape of the particles.  If several dispersed phases are 
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present, the number of possible combinations and corresponding 

gradients is further increased. 

Details concerning gradients in composites and a discussion 

of their effects on the local and global properties of composites 

may bo found in Reference 9. 

Composite materials can be designed on a coarser scale 

than that of the composites considered in the foregoing.  For 

example, various kinds of laminates have been used.  They lend 

themselves to gradient construction. 

6.    Complex Materials 

Materials belonging to different classes can be combined 

in one structure.  As mentioned in the Introduction, a cermet 

combines a metal and a ceramic.  The ratio of the components and 

other characteristics in a cermet can be varied and this intro- 

duces the possibility of gradients.  The example of armor appli- 

cation has been mentioned. 

A graded glass/metal seal is a type of material which 

solely depends on the gradient for its usefulness.  The specific 

nature of this gradient depends on the thermal expansion co- 

efficients of the glass and metal. 

Polymers can be combined with nonpolymeric materials. 

Reinforcing fillers, which cause marked changes in the properties 

of polymers, are usually not polymers; an example is carbon black 

in natural rubber.  Doping can change a polymer from an insulator 

to a semiconductor; the addition of iodine to polyethylene 
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causes such ■ change.  The use of fillers and doping agents 

makes concentration gradients possible.  Another potential 

development is the joining of a polymer to an inorganic material; 

the joint can be made if the inorganic material has a porosity 

gradient at the surface and the pores are impregnated with the 

polymer. 

.. 

7.     Conclusion 

This memorandum has concentrated on the characteristics 

of gradients which can occur in the major classes of materials. 

Details on quantitative aspects of gradients and the effects of 

gradients on properties, particularly in polymeric and composite 

materials, may be found in References 7 and 9.  The mathematical 

analysis of compositional and structural gradients and the 

systematic consideration of the effects of gradients on properties 

will be the subjects of later memoranda. 

Acknowledgements 

The writer first became interested in the subject of 

this memorandum while spending a sabbatical year at Harvard 

University as a guest of the Division of Engineering and Applied 

Physics.  Later he collaborated with Professor P. E. Duwez on 

a related subject involving composites and with Professor Mitchel 

Shen in the area of polymers; these joint efforts have contri- 

buted to the present study.  Support by the Advanced Research 

Projects Agency of the Department of Defense under Contract No. 

DAHC15-71-C-0253 is gratefully acknowledged. 

-479- 



References 

1. 

2. 

3. 

4. 

5. 

6. 

9. 

10. 

11. 

Metals, 1954, pp. 63-130. 

,«^ n v Floe Surface Hardening of Steel, 
f^ioSM? ^il^dla o Science and Technology, 
3rd ed.. Vol. 13, 1971, pp. 329-332. 

C. G. Goetzel and J. B. Adamec, Metal Progress, 70, No. 6 

(1956) 101. 

r    r    Goetzel and H. W. Lavendel, Infiltrated Powder 
cimpinents for Sower Plant and Propulsion Systems, in: 
pffiee Proceedings, 1964, ed. F. Benesovsky, p. 149. 

M. L. Wilkins, Lawrence Radiation Laboratory, Livermore, 
Cal  private communication. 

ARPA Materials Summer Confererce, July, 1971» also J. 
Mater. Sei. (in press). 

M K Bever and P. E. Duwez, Gradients in Composite Materials, 
^e?imrnVaery Reports, Memoranda and Tochnical Notes o_e 
ARPA Materials Summer Conference, July, 1970, pp. n/ x 
also Mater. Sei. Eng. (in press). 

F. R. N. Nabarro, Theory of Crystal Dislocations, Oxford 
University Press, 1967, p. 575. 

G. Wassermann and J. Grewen, Texturen Metallischer Werkstoffe, 
2nd ed., Springer, 1962, pp. 7, 13. 

12  P S. Mathur, Mechanical Contributions to the ^^.^"in 

Icience, Massachusetts Institute of Technology, 1972. 

-480- 



I 

D 
L      1.  T  J Ebert, F. T. Krotine and A. R. Troiano, A Behavioral 

13- m£l  ?or the Fracture of Surface Hardened Components, 
Trans. ASME, 1965, Paper No. 65-Met-2. 

the Behavior of Carburized Components, Trans. ASM, 62, 1969, 

829, 

I       15.  w. D. Kingery, Introduction to Ceramics, John Wiley & Sons, 

1960. 

16.  R. E. Mistier, private communication. 

r    D Talbort, A Basic Investigation into the Potential of 

Clemson University, May, 1969. 

S. ,. Hulbert, F A. Voung, R. S. "^Vierte""' 

s?ij2'tÄ
B3l7n;itfoi.ci1KS-S,,irsai« StiU»« 

Chemical Engineers. 

17. 

18 

-481- 



ANALYSIS OF STRESS INTENSITY FACTORS IN A PLATE 

WITH ANY GIVEN DISTRIBUTION OF CRACKS 

M. Ishida 

Regular Member 
Aeronautics and Astronautics Technology Laboratory 

1880 Jindaiji-chö, Chofu 
Tokyo, Japan 

April 2, 1968 
Presented at the 4 5th Session of the Regular Symposium 

Received April 15, 1969 

Nihon Kikai Gakkai Rombunshu 
(Trans. Japan Soc. Mech. Engineers), 

35 (1969), 1815-1822 

Translated by: 

Mr. Coe Ishimoto 
M.I.T. 

for 

ARPA Materials Research Council 
Summer Study Group 

Woods Hole, Massachusetts 
July 1971 

Preceding page blank 

-483- 



AiIALYSIS OF STRESS INTENSITY FACTORS IN A PLATE 

WITH ANY GIVEN DISTRIBUTION OF CRACKS 

M. Ishida 

i. • Introduction 

Since the introduction of the concept of the crack 

tip stress intensity factor, K, by Irwin1, many analyses of 

the tueoretiicai value of K in various new problenui have been 

carried out parallel with applications to the problems of 

[[brittle]] fracture and fatigue.  For the mutual interference 

among more than two cracks, exact solutions exist only for the 

case of cracks lined up on a straight line.  For other cases, 

in general, elaborate analyses are necessary, but recently 

Yokobori et al.2 have obtained important results for parallel 

arrays of cracks. 

This paper, in further generality, describes the 

method of solution by iteration for a plate with an array of 

cracks of arbitrary number, positions, lengths, and directions 

subjected at a long distance to arbitrary biaxial tensile and 

shear stress and bending moment.  The method is applied to 

typical problems, providing new data on K.  The range of validity 

of the method and the accuracy of the results are carefully 

examined. 
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2.      Theory 

2,1     Stress function.  We consider an infinite plate with a 

dUtrilHition ol M arbitrary array of an arbitrary number (N) 

of linoar cracks yubjoct to stress at a Ion-} distance.  Wc fix 

a reference coordinate system (Xo, Yo) on the plate, and lot 

each crack have center 0., length 2L.,   angle with respect to 

the X0-axis a., and polar coordinates from 0. in the reference 

coordinate system (R., ß.) (j = 1, 2 N).  For use later 

in the analysis, we establish N rectangular coordinate systems 

(Xj, Y^ with origin at the center of each crack and with the 

X-axis in the direction of the crack. 

We further set a standard length d and define dimension- 

less rectangular coordinate systems (x., y.), complex coordinates 

z.. and parameters lj and r.. as in the following equations: 

xo " 
Xo T   ' y  = I» = x  + iy  = ifi Xn+iYo -\ 

'j " ^ ' »j 
Y^ X.+iY. 

' ZJ = xj + ^j= -v-2 
) 

(1) 

L. R. 

(j = 1, 2, . .. , N) 

Then the relative dimensionless position vectors 

0jük of thii! crack centers are given by 

n 
ö 

i3ik     i0k     iß-i 
(2) 
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Assume that the plate is infinite in extent, that there 

are no external forces on the boundary of any of the cracks, 

and that a stress of the following form consisting of a com- 

bination of biaxial tension, shear stress and bending moment 

is applied at a long distance. 

o ■ 
X 

u * IT 
A 

•(•♦«I») (3) 

xy ay 

Here, o   is some standard stress and u, 3, y,   <  and u 

are constants (Fig. 1). 

For our analysis, we first assume the following form 

for Airy's stress function la this problem. 

N 
^ I    x, (4) 

k-1 

.KQ   corresponds to the stress condition at a long dis- 

tance (Kq. 3), and is expressed in the following form using 

complox potentials ({'0(z0) and ^0(z0): 

K0   -  "d'Hjä.^U,)   4  *0(z0)) 

'K ('.)   -  iu^'«)«ü  ♦ i(vj-iOz0
2 • '" • (5) 

( , (*„)    -    ',(.     .Wlr)/.0"    ♦   yylw + ir)// 
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Next, consider all the cracks as limiting cases of 

elliptical holes of large eccentricity.  Then, in general xk 

is a stress function which has singularities only inside the 

crack k, and may be expanded as follows: 

*k ■ ^V^kW + W} 

*v(zk) =  I  (F 
n=0 kl'lc   -  „>„ ^i^k" + iFn,k,)zk 

-(n+l) 

^k^k) "Vk*10* zk + J^n,k- + iDn,k,)zk'n^ 

(6) 

Here, coefficients bearing the signs " • " and   

express the real parts and the imaginary parts respectively, 

of the corresponding unknown complex coefficients. 

2.2    Coordinate transformations.  In determining these un- 

known coefficients from the boundary conditions, we only need 

to consider the conditions such that all the edges of the cracks 

are free, since the boundary conditions (Eq. 3) at infinite 

distance are satisfied by Xo alone and the Xj-'s (k = 1, 2, ..., 

N) are of the form such that the stress vanishes at a long 

distance. 

Since each elf nent x^ of the stress function is expressed 

in a different coordinate system, in considering the boundary 

conditions for a given crack j, it is convenient to express 

everything in the coordinate system z. ■ (x. + iy.) whose origin 

is at the center 0. of this crack.  For Xo» using the relation 
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between 2. and 2 

ia.     is. 
s?0 = 2^6  J + r.e 

In Eq. 5, we obtain the following form: 

X0 = 'Jd2Re{ij4.0*(2j) + ^„Mzj)} 

1 
r 
2la 

ia 

n*(2,) = ?{S+a+rje  
:j(M-i<)}Zj + IJ^I^K), 1 

*0*(z;.) = —^—{6-a+2iY+r;j (p cos ß.-K sin 3.)}z. 
3  J 

3ia . 

24 (M-t-iK)z.3 

Also, for xk(k > 1), we put 

zk = zje  ^    " rjke  
jk k 

(7) 

(8) 

(9) 

into the first of Eq. 6 and obtain an expression in terms of 

Xk = ad
2Re{5j*k*(zj) + V(zj,} 

i(ak-a.) 

rjke       ] 

>     ao) 
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ü 
ü 

D 

11 
ü 
0 
II 
n 

and then substitute the second and third of Eq. 6 into Eq. 10, 

and again expand Xv in a power scries of z..  Using the result 

together with Eq. 8 in Eq. 4, the entire stress function may 

be rewritten in terms of the z.'s as follows: 

X = cjd2R tz.-t- . (z.) ♦ f. (z.) ] 

■ 

W ■  I {(Fn -i,+iFn -i,)7i"(n+1) + (Mn i**iMn $**        ] 

> (U) 

VZ.)  " -Do.-i-iOg Z4* I     (Dn H^iDn />« 
-n 

r"j • #3 j „;! n,J  " n,j  j 

♦  J (K  a-+iKn .Mz""
2 

ni0  
n'J    n'J   J 

Ao n M^ .• » :T-{ß+a"«-r . (ycosB.^Ksinß.)) ♦ =i-(iJCO«o4*ic«ina.) 

*   I    Z (en /
#fcr. k->fn i

p'kFD k.) 
P-O Mj 

I 
M     .'   ■ ^4—r . (Msinß.-iccoiß.)   ♦ ^4-(usina .-«cosa.) n»j 4     j J 3 8 ) J 

.   n .   n 
AO     _      <..-J_a       o     »      .     Al 

p-0  kjj       "'^ p'k       "'^ p*k 

A  n 

K     |«   -  -J-((.-u)co«2a.-2ysin2o.*r.co«2a.(ucosß.-«»lnP.) 

.   n *      N « k 
♦ «-(uco»3o4-«iin3o4)  ♦    i (•„  S'  0n h« 

>   (12) 

♦ b P^ 0_   . •♦€ P'kr^ ..•♦d.   p'kr ..•) n,j p.K        n,j p.K        n.) p,k 
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K * ( (Ö-o)iin2a^2YCO«2n^r.»ln2a. (ucotB^-Kiin^)) 

A   n • N 
♦  54-(u«in3o44'ieco«3u.)   ♦     J       7   (-b      P,k0 

24 j j pio k^j       n^ P*k 

n.)      up.k    an,J      rp,k  *cn.3      rp#k   ' 

whcr« 

0#R      co»((n^2)(a1te-a1)i •innn*2)(H1k.0.)»   ' 

ICn.J 

Id      P'k 
n.J 

r.. .»•• 

^Jk' 

1 (in 

%H    l BM i       K^^       J 
and if*| A," aro Kronockvr dvlta*. 

2.3    Boundary condttiom on th« crack boundari»».  M« have 

now an «xprMaion for the at rasa function in term« of only u • 

i^a. Ma r.aKt conaidar tha condition« which make tha boundary 

of crack X from.    Mo have alraady aapraaaad thn atrraa function 
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• • 
of an infinite pUto with elliptical holes in the form of 

Eq. II, and we have given the relrtionship which must hold 

among the coefficients of the stress function If the edges 

of the holoo aro to be free. We need to find the limiting 

expressions as the minor axis approaches sero.  By appropri- 

ately rewriting some variables and constants in this result, 

the condition that the stress function Gq. II makes the boundaiy 

of crack ^ free Is found as the following relations which give 

the log s^ and the coefficients of the odd-powered terms in s. 

as linear functions of coefficients of the even-powered terms 

In f •••! 

(I 

vr-V^V^^-vr^ p-0 

n»3   p*o '     P P»^  P r»J 

fn 4* - I   l4n*P*2^«n«« 4,^nM. 4*) n»3  „:o J    P p*i P p'i p-O 

(n-0. I, 2, ...) 

> (14) 

Li 

:: 

where 
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a._« - v±[2p;1] 2p 22P 

in 

in 

^n* 
L_f4 2P+2nL 

(p+D 
r2p+lU2n-l]+2pP+^in 

p n r _in 

p.n 
fill     J   (2m+l) 

2p 22n+2p+i(2n+l)   m-0 

jji. 
p+l,n 

I    m o     ?n - 
2p 22n'*"2P+,n    m-0 

l7p pTT      2p 

2p+2 
[p-m+lj 

2p+l 
lp-m J 

2n 
n-m 

m=0 

2n+l 
n-m 

2p+2 
[p-m+lj 

2n   j 
n-m (nil) 

a      jn   m     y2p 52n+ 
—i f(p+l) 
2P*2(n-H) L 

2p+l 
P 

2n 
n 

n+l 
'2n+l 

p.n 
[   (2m+l) 

m=0 

2p+l 
p-m 

2n+l 
n-m . 

p,n+l 
+(2p+l)       I    m 

m-0     ^ 
2p  lf2n+2  A 
p-mj [n-m+lJJ 

2n+1 1 £+2f2p+3] f2n)+2£±l  P+l'n{2P+3  ) f2n+l)
>l 

2p+i "  22n+2p+^)n+Tlp+l  JinJIH+T    ra£0   [p-m+lj [n-m JJ 

2n+J 2p-t-3 

2p*i 22n+2p+',(n+l)   m-0 !*>'(£21(^1 

2p+ I 22n+2p+ "^nTT 
2p+3 

lP+1  J 
'2n^ +2Ei3 p+£'nf2p+3   lf2n+lfl 

• Li*, i t.        n-m+l      n-m     I 
m=0 [p-m+lj 

ap-M 
?n+i _ 2p-»-l 2n+i 

g2p+ 
2n+i 

2p^S  c2p+i 

j [-Vin("*i)f'p:2lf'n 
+ ^p+^^n+l m£0    lP-n» J (.n- .an+i 

2n+2 

p,n+l 
2p»2  I     (2m+l) 
2n+3 m-0 

2p+l 
lP-n» J 

2n+3 
n-m+1 ) 

/(15) 
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11 Tho other coofCicionts (sucli as np
n and Cp" when p ♦ n 

n       is odd) all vanish.  In these equations, the upper limits of 

the summations are taken as the smaller of the two given. 

We have considered crack j so far, but in our problem 

all the cracks must have free boundaries, so we have all the 

relationships for j = 1, 2, ..., N in Eq. 14. 

2.4     Determination g| unknown coefficients.  Summarizimj 

tho foregoing, the stress function is given in terms of the 

z.'s by Eq. 11, in which appear the unknown coefficients D^j« » 

Q   .   F   . and F   ' which are determined by substituting 
n,j  '  n,j      n,3 

Eq. 12 into Eq. 14.  However, it is more convenient to consider 

.   „       e.   i   v       .   K   '.M.'» and 

Mn .' (n = 0, 1, 2,   ...; j - I. 2 N) as the unknowns and 

[I      to'solve the conditions of Eqs. 12 and 14 simultaneously. 

Equation 12 is completely determined by the relative 

positions of the cracks from the constants a, 3. Y, < and |l 

n      given in the long-distance stress condition Eq. 3 and from 

W       Eq. 13.  Equation 14 is a power series in 1j (j » 1. 2, ..., N), 

so if we write 1. - ^ where the constants ^ give the ratio 

of lengths of the cracks, they can be expressed as power series 

[j      of X alone.  The positive-valued X may be chosen arbitrarily, 

but here we use for our calculations 

X ■ max -£  
n L rjk J 

for a reason which will be explained later. 

-493- 

1! 



Next, in solving the simultaneous Eqs. 12 and 14, we 

use the iterative method, as in the author's previous paper5. 

That is, we assume all the unknown coefficients to be a power 

series in \,   substitute them into Eqs. 12 and 14, and set the 

terms of the same pc-wers in the two expressions equal to each 

othur, giving a sot of relationships from which the coefficients 

of the assumed series may be automatically found progressively 

from the low-power terms to the high-power terms. 

2.5    The stress inteasity factor.  In general, if we set 

the rectangular coordinates with the origin at the crack tip as 

(x,y) and the related polar coordinates as (r,9) as in Eq. 2, 

the stress components in the neighborhood of the crack tip in 

a plane can always be given in the following form1: 

o.. = M  cos f|l-sin 4 gin 3ü x  /IF 

- M  sin §f2+coa | co. ttj 
/2r 

Ki     0 
—•■ cos ■» 
/5F   * 

I+sin | sin 4p 

Kj     0     6     36 - —~  sin ^ cos i cos ■^• 
/3r 

Ki   e   e   3e 
TVU - -—: sxn 7 COS -s- cos «- xy  /5r    * t 2 

JU cos Ki-sin | sin f) 

> (17) 
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Id and K2* are related to the shape, boundary shape 

and load conditions of the crack, and represent the intensity 

of the stress field.  In this sense, in a planar problem, thoy 

arc called the crack tip stress intensity factoru am« are used 

extensively in the analysis of problems of brittle fracture 

and fatigue.  Ki and K2 arc respectively called the symmetrical 

and the antisymraetrical components of the stress intensity 

factor. 

In the present problem, the stress function is given in 

the form of Eq. 11 in terms of the z 's.  Here, the stress 

intensity factor at the tips A, and D^ of crack j is computed 

from the following equation: 

K/W-IK/W   =  2/1 0/3 liml/z^c^.M^)) dB) 

After interchanging the order of summation in Eq. 18 

in which the expansions in X of F^j* 1 ^»j* ' Mn,j* ' ^»J* 

obtained by the iterative method described earlier are sub- 

stituted into closed form into ♦jUj) of Eq. 11, we sum up by 

a method similar to that of the author's previous paper5 the 

first series and then pass to the limit. The resulting crack 

tip stress intensity factors are given as power aeries in V 

as follows: 

Editor's note:  In the USA, K» and Kj are more commonly ki and 
ka or KJ/ZTF and K^/ZTT. 
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(A.) 
- f,  ' C-M 

ULI        (M (A4)      N    n 

J n»0 

(B4)    _  (B.) 

CI9} 

1        n-0 n 

j,     Huwurtcat Cowt>uf tton» 

Tho Urge-»c«lo co^>ut«r HITAC S020B at th» A»ron«uttcs 

and A«trunauiic« Tvchnoloqy Laboratory wa« uaoU for the nuacrkcal 

co*vutationi.  A Fortran proqra* !• avaiiabl« which print» tha 

value of tho coaffidant. f.^», f.(BJ^ f*,AJ^ ^<HJ, of 

each crack tip intanaity factor diractly fro» th« «tra«! paraaatan 

a, 0* y» <. »•, tho polar coordlnataa (r^, 8^) of tha cantar« of 

tha cracka« tha dlraction» of tha cracks «j, and tha conttanta 

c4(J • li 2,   ...« H) oxpraailnq tha ratloa of tha lemjthn of 

th«* cracks. 

Th«r« aro no thaorotlcal liMltt to tha number of crack» 

N and tho ordar M of tha aarlas of Bq. If. llowovor. u«im| iho 

prosant pro^raa *#hlch avoids tha uao of P-iqnotlc tapo In order 
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ion 

to MVO computation timo, the maximum value of M diminishes 

at th« number of cracka N incroasoa because of the limitatii 

of the core capacity. The relationship between N and M is 

shown in Table 1. 

Results of the numerical computation for typical cases 

Arm  shown in Figures 3-10.  Figures 3 and 4 arc the horizontal 

and vertical tensions of a plate with two cracks of equal 

length at an angle to each other.  In general, both Ki and K7 

ere finite but we show only for the fracture-mechanically 

important Ki its dependence on th« length and indentation of 

the cracks. The solid and broksn lines correspond respectively 

to the inner and outer crack tips A and B.  Ij ■ does not vary 

much with the length of the crack, but I, A* which corresponds 

to the inner tips, increases sharply under |(vertical)) tension 

as the crack lengthens whereas it decreases under ((horizontal)) 

tension and shows the stress-moderating effect due to alignment 

of the cracks. 

Figures 5 and 6 show the results for a plate with two 

parallel cracks of equal length subjected to both tensile and 

shear stress, f. * and f . refer to the inner tips of the 

cracks, and show a rather complm*  behavior with respect to 

variations In c/d and X.  In both cases the value does not 

increase sifnificantly even if i increases If c/d is small, 

but if c/d is large the values increase sharply with Increase 

m », « nverging to the result for cracks lined up on a straight 
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line (curve for c/d -*■  »). 

Figure 7 shows f1 A and f2^A of the inner crack tips 

for a plate with two cracks lined up on a straight line sub- 

jected to both tension and shear force.  For this case, there 

are exact solutions'' which involve elliptic integrals, but 

since numerical solutions are not available we have shown the 

results in the figure.  The solid line for a = 0° in Fig. 3, 

c/d - ■ in Figs. 5 and 6 and Li/La ■ 1  in Fig. 7 are the same 

curve, and a = 90° in Fig. 4 and c/d = 0 in Fig. 5 are the same 

caso, and independent computations of these results, of course, 

arc in agreement. 

Figure 8 shows f^ and f?^  of the middle crack for a 

plate with an odd number of cracks of equal length lined up on 

a straight line subjected to both tensile and shear stress. 

The limiting expression as N becomes infinitely large is known 

in closed form as 

■      i 

f.,A " f
2,A ^ / 7X 

tan V (2°) 

and in included in the figure.  One can well see the convergence 

of the curves as N increases. 

Figure 9 is for a plate with an odd number of evenly- 

spacod cracks of equal length,  fi for tension is shown in the 

bottom half of the figure.  The solid lines are for the outer- 

most cracks for which Ki is greatest and the broken lines are 

for the middle crack for which Ki is least.  All of these values 
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a» 

Ü 

i. 

docrcaat! as tbo  rnmber of cracks N or A incrcusou.  On Uu    other 

liand, f^ for the  shear force is greatest for the middle crack, 

so it is shown in the top half of the figure and it increases 

as the number of cracks N or A increases.  As N approaches 

infinity, all groups of curves should converge to a limiting 

curve. 

Figure 10 is for an example of the most general case of 

crack distribution and stress conditions.  f, is indicated 

above the crack tip and fj below the crack tip. 

Finally, we discuss the range of validity and the 

accuracy of this method.  In general, Eq. 19 obtained by this 

mehtod is nothing but the Maclaurin expansvjns of the exact 

solutions, so the error arises only from the omission of higher- 

order terms.  For example, for a plate with two cracks of equal 

length subject to both tensile and shear stress, corresponding 

to L1/L2 = 1 in Figure 7, the exact solution7 

Ü (1+M2  Ute- -   (1-A)2 

f.   ,  =•  f l*k     2'A 2x/rT 

(1+x)3/2 {1 - li&} 
>,B ~   ^2,13 " TT «i.i-«...--—'■ n    ^ (21) 

2/T 
1+1 

is known.  Here, K(k) and E(k) are respectively elliptic integrals 

of the first and second kinds.  If Eq. 21 is expanded in X, they 
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indeed agree with the author's calculated Eq. 19.  The numerical 

values are as compared in Table 2,   and the results of the 

present method agree with the exact solutions to more than 7 

significant figures when X i 0.8, to 4 significant figures when 

A = 0.9 and to within only 1.7% even when A ■ 0.96. 

A mathematically rigorous e-\amination of the convergence 

of Eq. 19 and of the errors for the general case has not been 

done.  however, it is known from all  the problems of stress 

concentration analysed by the author by the iterative method 

that there is no great error in estimating the convergence and 

error from the terms in the series actually computed5.  Also, 

we recognize the general decrease in absolute value of the 

coefficients of the series with increasing order of the terms 

for all cases analyzed if we take A as in Eq. 16, in the present 

problem.  Considering these two facts, we may consider the 

present general method of solution to be valid and accurate as 

long as A is not very close to 1, that is, as long as the 

circles whose diameter& are the cracks do not overlap and are 

not very close to one another. 

Now, in the actual computation it is convenient to 

compare partial sums of the series in order to estimate the 

accuracies of the results.  Table 3 gives the partial sums of 

the series tx  . for c ■ 5d in Figure 5.  Lines in the table 

indicate that thereafter there are no changes in the last digit. 

The number of accurate places for each A may be estimated from 
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the behavior of convergence of the partial sums.  Again, we 

sec that the present method has practical validity in  the 

range X ^ 0.94.  In the computation program the partial sums of 

the series Eq. 19 may also be found if necessary, and the curves 

of Figures 3 through 9 represent analyses of several typical 

cases with the accuracy just described. 

4.     Conclusion 

A general method of solution by iteration has been 

proposed for the crack tip stress intensity factors Ki and K2 

for an infinite plate with an arbitrary array of a number of 

linear cracks, distributed in arbitrary positions, with arbitrary 

lengths and orientations, subject to arbitrary biaxial tension, 

shear stress and bending moment at a long distance. A Fortran 

computer program was made which directly gives Ki and Kz, given 

mechanical and geometrical constants, and numerical results 

were obtained for typical cases.  It may be considered that 

this method of solution is valid as long as all the circles 

having the cracks as diameters do not come very close to each 

other. 

However, the cases in which the cracks are close to 

each other are also fracture-mechanically important, and a 

general solution for those cases are also desirable.  The 

author wishes to report his attempt when it is completed.  In 

closing, the author thanks Mr. Amakusa of the Aeronautics and 

Astronautics Technology Laboratory, who has collaborated in 

the numerical computation and the production of the figures. 
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Table 1 

Relationship between the number of crack« N 
and the order M of the series (19) 

N 

M 

10  11  12  13  14  15  If.  17 

57  57  57  55  47  41  35  31  29  25  23  21  21  19  17  17 

Table 2 

Tension and shear force on a plate with two cracks 
of equal length lined up on a straight line 

fA fB 

X (19) (21) (19) (21) 

0.80 

0.85 

0.90 

0.92 

0.94 

0.96 

1.228 935 

1.312 429 

1.453 53 

1.543 1 

1.669 6 

1.861 

1.228 935 

1.312 439 

1.453 87 

1.544 5 

1.676 2 

1.893 

1.081 067 

1.096 714 

1.117 38 

1.128 0 

1.140 7 

1.157 

1.081 067 

1.096 716 

1.117 41 

1.128 1 

1.141 1 

1.1^8 
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»..il.    3 

Example   (c - 5d in Tiquf 5) of partial auiw 
of  tha  «orlot  f    _ 

\ 

9 19 29 39 49 54 57 

0.40 l.i'32 — i 
... mmm 

0.50 1.058 1.058   ... ... ... ... 
0.60 1.099 1.099 ... ... ... mmm 
0.65 1.128 1.130 —- ... ... ... ... 
0.70 1.165 1.169 ... ... ... ... 
0.75 1.213 1.221 ... ... ... ... 

0.80 1.275 1.289 1.285  6 ... ... 

0.85 1.354 1.380 1.364  3 1.364 8 1.364  7 ... 

0.90 1.458 1.498 1.442 S 1.448 4 1.446  9 1.446 0 
0.92 1.507 1.553 1.465 7 1.480  5 1.475  8 1.473 0 
0.94 1.562 1.614 1.479  0 1.515 7 1.501   1 1.491 6 
0.96 1.623 

^ 
1.678 l|l.379 1.480 0  1.568 9 1.525   1,1.494   3 

-503- 



BIBLIOGRAPHY 

.  C. R. Irwin, Handbuch ömr  Phyik. 6 (1958). 551, Sprimjor- 
VrrUq. " 

.  T. Yokobori «t «1., gap. Rot. In«t. Strength and fracturo 
of Maf rial», Tohoku Univ., Samial, \-\   llMl) t   1-3 l'Ml) t 
3-1 HHl). 

.  Xthida, WAhon Kikai CakKai RowbunahO, 21-107 (July 1955), 
502.   "" 

.  Uayaahl, Wihon Kikai Gakkat RowbunahQ. 25-159 (Mov^nbar 
1959), ll)J, papar /§}. "" 

lahida, Nihon Kikai Gakkai Roaibunahg. 21-107 (July 1957), 
507i 22-133, (mflj. §09; JMJl 11**977  474» Rocorda of 
tha Aeronautical Sociatv. "HJ-lOO (fUy 1962), 1411 TranaT 
A.S.M.E. Bar. I 33-3 (Saptawbar 1966), 674. 

H. N. Maatargaard, J. Appl. Mach. 6 (1939), A-49. 

.  f. Erdogan, Proc. 4th U.S. Nat. Conqr. Appl. Mach., (1962), 
547, Parganon Proaa. (SIC) 

-504- 



• • 

u 

.. 

.. 

TTTTTTT^ 
79 

Jkv 

:; 

riqurr 1. 

- 
-§••- 



. 

. 

Figure  2. 

-506- 
• 1 



. . 

11 
0 010.2 03 0.4 0.50« 0.7 Ofi Q9 10 

X«2L/b 

i! 

D 
Figure  3. 

-507- 



- $' % - 

—»   . V 

n—i—i—i—r 

0   0.1   0.2 03 0.4  0.5 0.6 07 0.8  0.9   ID 
X«2L/b 

Figure  4. 

-508- 



.. 

0 
11 

D 
il 

fl 

(1 

n 

1.8 T 1—i—i—n—i—\—i—n 

15. 

i       i      i       i       i 

0.1   0.2 03 0.4 05 0.6 07 0.8 0.9   1.0 
X-2L/b 

Figure  5. 

-509- 



01   02 03 04  05 0J6 07 08 09 10 
X>2L/b 

Fiqurm 6. 

-510- 



11 

0   01    02  03 04  09   06 07  OB   09   10 
A 

Figur« 7. 

-511- 



0   0.1   02  03   0.4   05  0.6  07   08   0.9   10 

Figur« a. 

-512- 



X«2L/b 

.. 

Figure  9 

:: 
-513- 



^ 

liM-4) 

T. «aso- 

Figure  10, 

-514- 



i 

tlDGE DISLOCATION ARRAYS AROUND A CRACK 

UNDER TENSION 

.. 

:. 

.. 

D 

0 

fl 

n 

F. A. McClintock 

Introduction 

Currently, one of the principal needs in fracture 

mechanics is the stress and strain field around a crack growing 

normal to the direction of tension (i.e., in Mode I) in an 

elastic-plastic material.  Pending an exact solution, a repre- 

sentation making use of dislocation a ays may be useful in 

shedding light on the role played by residual stress and on the 

difference between growing and monotonically loaded cracks.  A 

continuum solutior has been found for shear parallel to the 

leading edge of the crack (Mode III) by Chitaley and McClintock 

(1971). There the effect of residual stress is especially 

important where the rows of screw dislocations left behind an 

advancing crack correspond to incompatible strains.  In Mode I, 

howevor, the strain associated with trailing rows of edge dis- 

locations having Burger's vectors perpendicular to the flank 

is not incompatible, and the effects of residual stress may be 

much less. 

For simplicity, assume plastic flow to be confined to a 

single pair of planes emanating from the tip of the crack.  Non- 

unifo>- slip along these planes gives a dislocation distribution. 
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as shown in Fig. 1.  Crack growth leaves these dislocations 

behind in a wake region.  Under Mode III shear chltaloy found 

that secondary flow in the wake region could I... ri«H|l.«.M «MI.  A 

similar assumption will be made and later examliuid hero. 

Such a study was made feasible by a solution ohtatnud 

by J. R. Rice for the stress at a point z  near the tip of a 

crack due to an arbitrary edge dislocation at the point z^ 

near the tip (Appendix 1).  These results should also be 

obtained from the general anisotropic solution by Atkinson (1966), 

applied to a particular crystal by Ueald and Atkinson (1967). 

It should be emphasized that the dislocations considered here 

are only the resultants of the real dislocations; these are 

a discrete model of the continuum model of the real dislocations. 

The Yield Condition Under Loading Without Growth 

It turns out to be convenient to use complex variables. 

Let the crack be along z » x < 0.  Denote the deviatoric part 

of the stress tensor, referred to the x-y coordinates and 

normalized using the yield strength in shear, by 

.   sf3w7m + io 1/k (i) Tdx   [_     2 xyJ 

Referred to an r^Ö coordinate system, the stress deviator is 
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Normaliio the coordlnatos with the height of tho initially 

active plastic zone, II.I 
.. 

. 

C  x/Ui   n - h/Ht, c   (x*ly)/M, . i/H,       (3) 

»ofinc a yoneralizod burger« vector and normalise it, usintf 

tlu; slip heAght Hi and tho yield strain in shear, k/G, 

H       (bx+iüy)/4«i<l*v)M|{k/0) (4) 

For s3ip on pianos at an angle 0 to the x axis, 

ß/lßl • t41 (5) 

The stress deviator at z  due to a dislocation at s having a 

Burgers vector & can be represented in the form 

tdx - |»| F(r.#cd,0) <6) 

The function F(/;,r.d,0) will be %iven explicitly in a later 

section. 

The resolved shear stress on the slip plane 0 > 0 due 

to a pair of dislocations at ^»^ can be stated from Eqs. 2 

and 5 as 

Iin(Tdr) - Iin{e2i0jB|lF(r.,;d,0) ♦ F(r ,^,-0) J)       (7) 

The resolved shear stress due to the applied stress is given 

in terms of tho stress intensity factors Kj and Kll  for normal 

, 

loadimj  and  in-plano shear: 

n 
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With tymmetrical loading K.. • 0. Bxpraaa K. in terms of « 

nonMlisvd, nominal plastic tono sit« 

*bn*) /ll, (8h) 

With K.. • 0* substitution of Bq. 8b into 8c givas 

"f ^} X«(imr) - I« •,*w<^ ^r* > <•<?» 

Th« condition for incipisnt action of all dislocations along 

tha uppar slip plans is that the resolvsd shear stress due to 

the applied stress plus that due to the dislocations distributed 

along the initial slip plane, with density per unit height . ln, 

out to the limit h/H| • 1, attain the normal »/o«l value of unity. 

-1 • In e tie (7^ ^ i,Blnl ['«'Ve> * 'U'V-*>]d"j (9) 

Equation 9 is a Fredhol: integral equation of the first kind 

for the initial dislocation density i0i_|i having a solution 

for only one value of the normalised plastic tone sis« R. 

As the applied stress is increased, the distributions 

of stress and strain will remain geometrically similar, in view 

of thu homogeneity uf both the equations of cuntinuum mechanic» 
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and tin» boundary condition« («■ long as th« plaatic tono it 

contained within a boundary along which th« atraas and atrain 

nro doacribod by K.). Tha coordinatca of homologoua points will 

bo proportional to Kj in view of tha conatancy of the parameter 

K fro« Lq. 9.  Therefore any parameter involving acale providnn 

an appropriate criterion for fracture initiation} extent of 

plaatic tone, H|/coa 0, stresa intanaity factor K., crack opening 

displacement Imj^^di or stress at aome particular point.  It 

is the condition for crack growth that requires an underatanding 

of the physical mcchaniams involved.  First consider the mechanics 

of steady-state growth. 

Steady-state Stroaa and Strain Diatributions 

The steady-atate growth of a crack, under a constant 

atraas intensity factor, ia of direct interest in stress corrosion 

cracking, for example, but may also provide a uaeful estimate of 

th« onset of inatauility In plane atreaa Mode I cracking (e.g., 

Prisch, 19S8i NcClintock, 19S8} Broek, 1968) and longitudinal 

shear or Node XIX loading (McClintock, 1965).  Ita applicability 

to plane strain Node I cracking la one of the questions to be 

studied with the analyaia being developed here. 

As mentioned in the introduction, it will be aasumed that 

the only active flow is in the leading edge of the plaatic sone. 

The «li»location density is then only a function of thr normalised 

£ cootdinate 2* When n is a variable of integration it will be 

denoted by v.  Th« location of an eleswnt dislocation ia thus at 

-519- 



The total Burgers vector within an element of area depends only 

on MV and is 

d3 - ^nCiv)dCvdnv 

The steady-state solution is obtained by integrating the con- 

tributions of the trails of dislocations left behind the leading 

edge; 

-1 ■ Im e 
C fl m cote .«Ju^|,ltii,vi|' FU,cv,e) 

•»■ F(;,;v,-e) d^vdnv (ID 

Effect of a Decohering Region 

In some cases, especially with multiple cleavage crack 

initiation ahead of the main crack, with the crazed region 

in polymers, or with the necking region in thin sheets under 

plane stress, the fracture does not occur abruptly, but rather 

as a result of the gradual loss in strength of a thin region 

of localized dilatational flow (Berg, 1970, 1971).  As we shall 

see, the decohering type of fracture is likely to involve either 

slip on multiple planes or no plastic flow at all, adjacent to 

the crack.  In neither case do we treat it in this study; the 

discussion is included simply as an aid to physical insight and 

to help define the limits of the slip plane model of plasticity 
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discussed here.  In this model, the point at which the flow 

localization begins can onxy depend on the stress (or strain) 

ahead of the tip of such a zone.  For a decohering zone caused 

by intermittent cleavage fracture, the beginning of decohering 

n       might require the cleavage stress on an unnotched specimen at 

a structural distance ahead of the tip of the decohering region 

that was of the order of the grain size. 

Apply traction boundary conditions at x < c^ whenever 

d 

n 
a > öc at x - cd + pg (12) 

Within the decohering region the normal traction t will in 

general depend on the amount of cracking or hole growth indi- 

cated by a porosity £ and on the triaxiality o in the surrounding 

U      matrix: 

t - t(p,a) {12) 

The porosity may rise suddenly to an initial value p at the 

beginning of decohesion; thereafter it will rise with increasing 

normal displacement v 

v 
p ' po + 1 ft (s,p)dv U4j 

0 
;: 

o 
Satisfaction of Eq. 14 relating traction to displacement may 

well require slip simultaneously on a number of parallel planes. 

Alternatively, it is possible that the decohering region will 

so attenuate the stress concentration that the surroundings will 
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be entirely elastic, as pictured by Elliott (1947), Barenblatt 

(1964) and Dugdale (1960).  In either case the problem is beyond 

the scope of this article, and is mentioned here only for the 

sake of completeness. 

Transient Growth 

Once the crack has grown a first increment öc, the dis- 

location distribution on the slip planes emanating from the 

current crack tip is found from Eq. 9,  modified to include the 

translation of the original slip plane behind the crack and the 

different height of the new slip plane (see Fig. 1): 

♦ J  lßinl[
F(^<nv cote - öc + inv),ej 

0 

+ F 

0 

[;,(nv cote - 6c - inv),-oJ dnv 

rH2/H, r 
|(i2nl FU'nv cote + lnv'e) 

+ F(i;,nv cote - inv,-e) dnv (15) 

In the limit for a number of increments, as 6c -> 0, Eq. 15 

becomes a Volterra integral equation of the second kind, with 

an imbedded Fredholm equation of the first kind, in terms of 

the cross-derivative of the dislocation density, ^(i/ünU/.. 
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The Volterra integral equation of the second kind was encountered 

in anti-plane shear (Mode III) b, McClintock (1958), but there 

it was possible to assume that the extent of the plastic zone was 

nearly constant, as shown by Chitaley and McClintock (1971) for 

the steady state case. 

Fracture Criteria 

A criterion for cleavage fracture has been discussed 

above.  For hole growth, Joyce (1968) has found a blunting 

followed by alternating sliding off on a microscopic scale that 

opens up a 90° groove.  This is apparently the cause of the so- 

called "stretch zones" or more accurately "sheared zones" on 

overloading a fatigue crack.  Fractographs show that after a 

certain extension, holes begin to occur on the surface, often 

abruptly, and the flank angle becomes much less than 90°.  It 

is not known to what extent this transition is due to changing 

strain distribution due to a mixture of strain hardening and 

crack growth, to what extent it is due to more prestrain and 

hence lower ductility of the material approaching the current 

tip, and to what extent it is due to strain over a larger region. 

In crack growth on a zig-zag path, the shear cracking leads to 

a rapid crack extension per unit opening which may then decrease 

as the plastic zone becomes skewed.  Blunting may occur, and in 

any case, there is subsequent rapid growth on the conjugate 

plan , as sketched in Fig. 2.  Non-uniform developnent of the 

crac ; along its front leads to an average curve.  Ponding a 
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nor« conplote und«rit«ndin« of luch phcruMwna, it 999mm  roason- 

«bl« to tak« aa a fractur« crltarion mom  avoraqa «lope, rcpro- 

santin« crack growth p«r unit crack opanin« dlaplacomont. Tho 

crack opanlng at whAch tha growth rata accalaratat providaa 

the tcala factor «aaantlai to daducing a atraaa int.ntity factor,     | 

and tha ralavanc« of tha crack opening angla haa boon diacutaad 

by NcClintock (1968, 1969). 

With such a fractura critarion. growth appaara iModi- 

ataly on loading, for siaplicity tha crack growth in tha 

blunting «taga may b«i naglactad, ao all alip ia oonfinad to a 

aingla plana.  Equation 9 than applias, witi» tha condition for 

tho beginning of more rapid growth baing tho crack opening 

displacoManti 

2V, - 2 ain 6 I |8lri|dn (U) 

o 

After an incremental crack growth dot - c,-c,, Bq. 15 «ppliaa 

with the new plastic zone found fro« 

■w »       2dci fM»/Mi 
^^^^ -^7*7- 2.ine ] |B2ri|dnv (17) , 

o 

Very likely the critical quaation ia whether instability occurs        I 

on the firat growth beyond G±,  i.e.. whether Kj drops.  If not, 

an integral equation could be developed for continued growth. I 

The need for a numericil approximation to theae integral equatiuna     1 

is clear. 
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For nuibcrical solution the continuous dislocstion srrsys 

csn b« ssparatsil into discrsts dislocations. To kemp  track of 

strain» it nay b« nors convsnisnt to rsqard the flow as bsinq 

du« to dislocation sourcss ocatsd at spscific points» as shown 

in Pig. 3. The dislocations produced by thsss sourcss intorssct 

(and nearly cancel) at the Aidpoints of the «egnsnts bstwosn th« 

sourcss. Th« strsss at «ach sourcs is equated to th« yield 

stromjth in shsar.  »or instsneo, for initial yi»ldinq« considsr 

1. M dislocations with sourcss and dislocstions r«sp«ctiv«ly at 

[| 

. 

I 

"" ■ lÄltdrA) for   1-1  to  2 ♦! 

**m" W i^r^ 
(18) 

for J •  1  to I 

The corresponding discrete form of Cq. 9 is 

- 1 - Im e ,ieJ/I isi yi) #   f^lilfllffUISI^Iil^l 
^cd)*/* J-l L a 

♦ ru'f),;„(-'»,-o)) (19) 

Equation 19 can be placed in a sinpl« matrix form if the root 

of the normalitad plastic son« sits« /R, is r«qard«d ss 

|0(I|MX^1)|. Than on« can writ« Kq. 19 as 

0 -1 - Ajjl.jl l.J • I to 1^ ♦ 1 120) 
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M i first invitation,  fk* • - W.  X^ - 1.2,3.   -nd 10. 

for itoady itat« growth,  Bq.  II b«co^t 

X    ä J cot /(I,,.» ♦ W 
»     ._ _-t0 J 11 c(n -    r,C|Br{J)lffr('..n, f.vw).e) 

"l-I,ia        un'^ A    C      L 
♦ ru<x).cvCJ).-»»iof.v 

,2n 

wh.r. tv(J)  - Cv ♦ i J/^^x  * ^    Th# 4nt^rA,Ml W^*"1 

— i/t«,  to th« lnt.9r.ti0n c.n be err led ou    ni»«ric«lly to 

dotomino th. coofficiont« in M oqiution of th. for», of Bt|.  20. 

This work MM c*rriod out at iroim üniv«r.ity und.r tho 

AMA Cr.nt E 744 «nd co^Utod in th. lUt.rUl. R..Wch Council 

Sumr Study. July 1911, und.r th. Adv.nc^J R.a..rch ProJ.ct. 

Agency of th. o.p.ru»nt of Oof.nw und.r Contrwrt «o. OWC15- 

71-C-025J with Th. Unlv.r.ity of Michigan. 
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riqur« It  Dislocations on slip plans« during crack growth. 
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average curve 

crack length c 

a) fracture rule 

b) Crack profile and slip lines 

Figure 21     Ductile crack propagati 
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■igure  3:     Trails of dUloo.tion. behind a crack tip in steady 
flow. 
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HIGH-TEMPERATURE STABILITY OF SILICON NITRIDE 

J. L. Wood, G. P. Adams and J. L. Margrave 

Abstract 

Within the last decade, the level of interest in silicon 

nitride as a practical refractory has risen meteorically and it 

is somewhat surprising that high-temperature thermodynamic 

properties are so poorly known.  Fluorine combustion of a variety 

of SiaN.. samples should lead to a reliable value for the standard 

heat of formation.  This information, coupled with available and/ 

or estimated thermodynamic functions for the material at elevated 

temperatures, can be used to calculate dissociation pressures for 

comparison with experimental data.  Mass spectrometric studies 

allow one to demonstrate that only elemental species, Si(g) and 

N2 (g), are important in ordinary decomposition but other complex 

species are known—Si2N and SiN—which may play a role in forming 

techniques and establishing ultimate use limitations. 

Preliminary calorimetric results establish the heat of 

formation of SisN^s) in the range -200+10 kcal/mole, which im- 

plies a considerably greater thermal stability than predicted 

from earlier JANAP thermal data. 

0 Preciiing pue Mink 
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THE USE OF LEVITATION IN INORGANIC SYNTHESIS* 

. L. Margrave, J. A, Treverton and P. W. Wilson 

Abstract 

The possible uses of levitation as an inorganic syn- 

thetic technique have been investigated.  It was found that 

levitation is a useful method for the preparation of all types 

of compounds excepting those that are both non-conducting and 

non-volatile.  Observations suggest that if the product may 

have any of several oxidation states, the product will likely 

have the lowest oxidation state. 

*Published in High Temperature Science, Vol. 3, (1971). 

1| Preceding pege blenk 
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TUE US'i OF LBVXTATION IN INORGANIC SYNTHESIS 

L. Margrave, J. A. Trcvcrton and P. W. Wllion 

INTRODUCTION 

The phenomenon of levitation of conducting and .emi- 

conducting materials has been known for a considerable time. 

Unfortunately the technique has been more of a scientific 

curiosity than a useful approach to scientific problem..  Some 

efforts have been made to exploit the unique properties of the 

levitation technique,^ but most of these were not very pro- 

ductive. 

Probably the most useful work done to date has centered 

around measurements of the physical properties of the levitated 

materials.  For example, emissivity measurements have been made, 

and heats of fusion of metals have been measured using a combin- 

ation levitation-drop calorimeter apparatus.1"^  The metal is 

suspended in the magnetic field, heated and fused by interaction 

with the field, and then dropped into a calorimeter.  The ad- 

vantages of this method are obvious - high temperatures are 

easily attained, there is no container problem, and one may use 

either vacuum or controlled atmospheres. 

There is one report in the literature of an experiment 

that made limited use of synthesis with a levitated metal.5 
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Cobalt *#•* •u«p«nd«d in a fUld and 00 flowad around It. Cobalt 

oxide MM (ormtxl  and tha equilibrium conat^nta for the ayate» 

wore detemlned.  Except for thl« alnqlo «xperlment there appeara 

to have been no application of ihe levltatloa technique for 

Isynthetl«* 

The advantage« of the levltatlon tochnlqu« are numurou». 

Tha most Important are thoae mentioned above» hlqh temperatures 

can be attained In M atmoaphere of choice, and alnce the material 

is auapanded, there Is no container to react or contaminate.  It 

is the combination of these conditions tha^. ahould make the 

levitation technique broadly applicable. At high temperature« 

many materlala are very reactive and finding auitable containers 

can be difficult.  Indeed, with molten compounda at high temper- 

atures, the container problem is usually the limiting factor, 

and certain experlmente cannot even be performed. 

Levltatlon technlquea can be uaed for studying varloua 

types of reactions - solid-solid, «olid-liquid, liquid-liquid, 

gas-solid or gaa liquid reactions. Solid-solid reactions usually 

11      poae no particular problem using ordinary techniques and would 

not take full advantage of the unique qualities of levitation. 

Solid-liquid reactions or liquid-liquid reaction, (where the 

[1      liquids arc probably molten solids) could be conducted to ad- 

vantage in a levitating r.f. field.  The mixture of reactants 

D      could be levitated, heated until reaction was completed, cooled 

||      and the product recovered.  Provided the varloua compounds 

. 

I 
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involved were suitable for levitation, these reactions should 

be relatively easy to carry out.  No experiments on these two 

typos of reaction have yet been conducted since it was felt 

that the n,ost interesting reactions would be gas-soJid or gas- 

liquid reactions.  In this field the range of reactants is broad 

(only one reactant has to be levitated) and so the range of 

product type is also broad.  Reaction systems can be chosen that 

are adequately representative of various types.  It is impossible 

to predict the course of these reactions without experimentation.     L 

For instance, it is hard to predict whether reaction will occur       ■ 

on the surface of a liquid, in the body of a liquid or in the U 

gas phase as the reactant boils off the hot or molten levitated        | 

reactant. 

To investigate these problems a number of gas-solid and 

gas-liquid reactions were studied.  Reactions were chosen to 

represent as complete a range as possible.  The aim of the study 

was to define the limits of the levitation technique and to 

determine those types of reactions that could be most successfully 

studied using levitation techniques.  It was felt that the best 

approach was to study reactions that were already known, so that 

any advantage the levitation technique offered would be obvious. 

EXPERIMENTAb AND RESULTS 

The samples were levitated and heated using a General ! 

Electric IS KW induction heater (Model HM15L3) operating at 

«M K.I..  The induction heater was coupled to the levitation 
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coil via a transformer.  The chamber wherein the samples were 

levitated was a modified 500 ml glass bulb.  A gas inlet, gas 

outlet, and a quartz pyrometer window were fitted to this bulb. 

Temperatures were measured using an optical pyrometer.  All of 

this equipment has been described in detail previously.3 

Temperature control was achieved by altering the atmos- 

phere in the reaction chamber.  In a pure argon atmosphere the 

samples could be heated to 2700oC.  In a pure helium atmosphere 

the samples could be maintained at temperatures as low as 300- 

400oC.  By judiciously mixing argon and helium, any temperature 

between these two extremes could be maintained. 

Metallic samples were easy to levitate.  The sample was 

placed in a silica cup on a pyrex rod.  The induction heater 

was turned on and the sample was raised into the center of the 

coil where it immediately levitated.  Some materials (for 

example. Si and Ge) are not sufficiently conducting at room 

temperature to levitate.  For these materials, the silica cup 

was lined with a metal, such as molybdenum.  In the coil, the 

molybdenum was heated; this heated the sample, and at ^ome 

n      temperature (generally around 400 or 500oC) the sample became 

I sufficiently conducting to levitate.  The metal lined silica 

cup was then withdrawn. 

All of the solids and gases used are commercially avail- 

fl      able and were used without further purification.  Reactions were 

examined in the following manner.  The solid starting material 

(2 gn lump) was levitated in an argon atmosphere; helium was bled 

D 

-537- 



into the reaction chamber to control the temperature, which 

was generally held at 2000oC.  The gaseous reactant was then 

bled into the chamber and reaction was allowed to proceed until 

the levitated sample has been consumed, or until the accumulated 

products made further levitation of the sample impossible. 

The products recovered were of two types: (1) volatile 

compounds that had condensed onto the glassware and the cooled 

copper levitation coil, (2) the residue; of the levitated sample. 

Sometimes this residue was unreacted starting material, sometimes 

a mixture of reactant and product, and sometiires a pure product. 

All of the products were identified using x-ray powder 

diffraction patterns.  Samples were ground, placed in 0.3 capil- 

lary tubes and exposed for 16 hrs. in a conventional camera. 

The sample composition could be gauged to an accuracy of about 

5% which was sufficient for this experiment. 

Results 

One of the first experiments run was to determine what 

type of sample can be levitated.  It has been determined in 

this laboratory that almost all of the metals can be levitated. 

The following compounds were also levitated: Ca3i, SiC, AIMCS» 

Zzlij   and MoSi?; D^C would heat but not levitate.  Attempts to 

levitate CaF? and NaCl were unsuccessful. 

The results of the reactions tried are listed in 

Table It 
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TABLE 1 

LEVITATION SYNTHESES 

.. 

.. 

0 

n 

Reactants 

recoverecl Cr 
coil 

Products 
Experiment 

No. 
levitated 
compound3 

Si 

gas 

air 

residue 

1 Si02 (100)b none 

2 Si N2 Si(95), Si3N^ (5) 81(95), Si,N,(5) 

3 Si NHs Si(95), SiaN^ (5) Si(50), SijN^S) 

4 Si CHi, none SiC (100) 

5 Ge NH none Ge (100) 

6 Ge N2S GeS (100) Ge (100) 

7 Al NH3 A1N (100) Al (40), A1N (60) 

8 Al CH., none Al,C, (100) 

9 Ti CH., none TiC (100) 

10 Fe HC1 FeCl2 (100] none 

The sample temperature was about 2000oC. 

The number in parenthesis represents the percentage composition 
of the recovered product. 

i 
i 
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DISCUSSION 

Generalizing from the above reaults It appeara that 

motala, aillcidea, ami some borldea and carbldea are aultable 

for lovlt^tlon.  It la not eaay to levitate Ionic salta, oven 

at elevated temperature«. 

Poaalbly the noat Important reault of thla work la the 

obaervatlon that many reactlona occur between the gaa and the 

molten «olid, and not In the gaa phaae. Thla la conaiatant with 

tho obaervatlon that producta remained In the realdue In experi- 

ment a J# 4# 7, 8 and 9.  Mad reaction occurred in the qmu  phaae, 

all of tho product would have been recovered from tho col la and 

glaaaware; there would be no product In tho realdue.  Thla 

obaervatlon la of importance where It might be difficult to 

anticipate the oxidation atäte of product.  For example. In 

experiment 10 the product may have been either PaCl» or FeCli. 

However, aince tho reaction occurred between the gaa and the 

molten iron, the iron waa alwaya praaent in affective exceaa. 

This Inauroa that tho compound of lower oxidation atate will be 

formed, as confirmnd by tho reaulta.  It appeara that the uac 

of lovltation technique« will not load to tho formation of now 

halicies of oxidation atato higher than normally obaorved. 

Conversely, however, it ahould be an excellent technique for 

the production of halldea of lower oxidation atate, and be of 

uae in tho production of tho lower halidea of traraition, rara- 

oarth and actinide oleim-nta. 
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The other reaction« end result* can be moat easily 

classified in tenas of the physical properties of the products. 

The reaction of Si with NHi (experinont no. 3) qmv  a product 

that was both non-volatile and non-conducting.  Reaction pro- 

ceeded until the accusHtlation of product lowered the conduction 

of the residue, prevented the sample from heating and levitating, 

and so extinguished the reaction. Lev!tation is not an es- 

pecially useful technique where the product is non-volatile and 

non-conducting. 

Another group of reactions (no. 1, 6, 7 and 10) gave 

products that were essentially pure. These were reactions where 

the product was volatile at the temperatures used. The reactions 

proceeded to completion in most cases and the levitation tech- 

nique should be of great use in preparing compounda of thia type. 

Exporiment no. 5 waa run to aee what would happen if the 

product waa thermally unatable at the reaction temperature.  It 

haa been obao^vud that producta are often formed at temperatures 

at which they are unatable, but provided they are quickly 

quenched, they can aometimca be recovered.  in thia experiment, 

however, there waa no evidence of any reaction.  Cither GO.N.. 

did not form, or if it did, it did not volatilize before it 

decomposed. 

The next group of aucceaaful reactiona included those 

in which the product waa non-volatilo but it was conducting 

(experiments no. 4, 8, 9).  Those reactions proceeded to give 

complete conversion to a pure aingle product.  Thia ia another 

*. 

I 
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fluid where Uvitetlon techniques should be useful. 

To sumsriie, It appesrs that levitstion is applicable 

to most types of resction, except those where the product is 

both non'volatile and non-conducting.  Lcvitation has been used 

successfully to pruparc compounds that were either volatile or 

conducting.  A result of consequence in propoainq reactions that 

might be studied using lcvitation is the realization that if two 

products can be formed, of different oxidation state but similar 

thermal stability, the product actually formed will likely be 

the one of lower oxidation state.  This occurs because reaction 

takes place in the presence of an effective excess of metal. 

Provided these criteria are considered when experiments are pro- 

posed, it can be anticipated that levitation techniques allow 

the preparation of a number of compounds not yet known and make 

the preparation of some compounds that are known much easier. 
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HIGH-TEMPERATURE  PROPERTIES  OF  Nb  AND   Zr* 

D.  W.   Bonnell,  J.   L.  Margrave 
and A.   J.   Valerga 

Abstract 

Various high-temperature data available on these two 

important elements will be presented including new data from 

levitation calorimetric studies.  A complete set of thermo- 

dynamic properties will be presented for both the solid and 

liquid phases.  The emissivities of both solid and liquid 

phases will be discussed. 

0 
I] 

I 

*Taken in part from the Ph.D. Thesis of D. W. Bonnell, Rice 
University, May, 1972. 
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NIOBIUM 

In an effort to begin filling in the second leng trans- 

ition metal period, and perhaps to obtain an estimate of the 

thermodynamic properties of tantalum, which had been intractable 

even to the levitation process, the study of niobium was under- 

taken.  Coils of the solenoid design wound on a 0.375 in. form 

were used, and it was necessary to tighten the upper turns to an 

inner diameter of 0.250 in. in order to maintain a stable melt 

of niobium. 

The results of these determinations are presented in 

Table 1.  An extrapolation by Hultgren, et al.' of solid data 

from 1400 K to the melting point (2750 K) was used to obtain 

AH2750 (fusion) as 345701240 j/mole and AS2750 (fusion) as 

12.57±0.09 j/mole.K (3.00 cal/mole.K).  This can be compared to 

the estimate, based on AS2045 (fusion) = 9.6 j/mole.K for the 

heat of fusion as 26415 j/mole.  The heat capacity obtained was 

40.6+1.0 j/mole.K (9.70 cal/mole.K), chosen by Hultgren.1  The 

melting point used has been recently determined by Cezairliyan2 

using pulse techniques. 

Drops of the solid material were made in order to con- 

firm the extrapolation.  A helium atmosphere was necessary to 

resolidify the melt.  The scatter in these data was higher than 

the liquid, presumably due to thermal gradients in the sample, 

even though the sample was solidified from a molten sample before 

the drop.  The values derived for enthalpy do, however, agree in 

substance with the extrapolated values. 
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ZIRCONIUM 

In undertaking the study of zirconium, several factors 

were important.  From the experimental standpoint, the case with 

which zirconium forms both nitrides and oxides required a purifi- 

cation train totally eliminating even trace amounts of nitrogen 

and oxygen.  An initial purification train element consisting of 

a glass tube packed with clean lithium chips was not satisfactory 

and it was necessary to build a stainless steel trap holding 

calcium turnings heated to 600oC in order to scavenge nitrogen 

from the argon gas.  Four to six hour flush times were necessary 

to purge the levitation chamber.  Since both oxides and nitrides 

of zirconium are exceptionally refractory, and their vapor 

pressures are even lower than the metal, back-diffusion of atmos- 

pheric nitrogen through minute leakage paths forced the adoption 

of stringent measures to seal the system. 

The coils used were of the solenoid design, with a very 

small (-0.20 in.) gap between upper and lower turns, which were 

both would on the 0.375 in. form.  The chemically interesting 

factor in this system was the extremely long temperature range 

which could be studied.  Normally, if the power requirement can 

be met, the upper temperature limit is set by the vapor pressure 

of the metal.  When the vapor pressure of the substance in 

question rises much above 1 * IG"" atm., the physical quantity 

of material evolved per unit time is sufficient to obscure the 

pyrometer sighting path.  Zirconium has a liquid range of more 

than 1000oC for which the vapor pressure is less than 1 * 10"". 
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The obvious trend in all the systems studied to this point was 

that, to experimental accuracy, the he^t capacity of the liquid 

phase was constant.  The longer base line provided by this large 

liquid range was expected to provide a good test of the linearity 

of the enthalpy function. 

Table 2 presents the results obtained so far in this 

study.1 The linearity of the fit to the data for the range 2128 K 

to 2839 K, a span of more than 700 degrees, is representative of 

the best work obtained from this apparatus.  The inclusion of the 

three higher points increases the average error by more than a 

factor of 2.  It seems quite unlikely that this is merely random 

error for two reasons.  First, the minimum deviation of the higher 

points is nearly four times the average and the maximum deviation 

almost ten times the average.  For purely statistical reasons, 

this seems unlikely.  Second, all of the normally expected system- 

atic errors tend to cause data points to fall below the line.  For 

instance, oxidation effects lead to higher surface emissivities 

which would give a higher apparent brightness temperature based 

on the assumed emissivity for the pure metal; any loss of material, 

or any loss of onergy during the drop would produce an anomalously 

low enthalpy.  Only a failure of the assumption that emissivity 

is a constant for liquids, or the appearance of a temperature 

dependence in C would seem to explain the trend of the upper 

data points. 

An attempt to treat the possible temperature dependent e 

of C was made by fitting the trial functions of Table 3. 
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Equations 1, 2,   and 3 of this fit are the standard forms used 

to treat solid data.  These functions followed the data no 

better than could be expected from the addition of another degree 

of freedom.  In an attempt to represent an interpolation formula, 

deviation plots following the form of equations 4 through 7 were 

investigated.  None of these forms followed the data, with the 

exception of equation 7 with n = 6.  Table 4 shows the effect of 

this interpolation formula.  It should be emphasized that this 

formula behaves quite badly beyond the limits of the data, and 

is to be used only for interpolation purposes. 

Table 5 shows the change in emissivity necessary to 

account for the apparent curvature.  This effect, also, is not 

a simple relationship and the necessity for gathering more data 

to characterize the effects observed is obvious. 
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TABLE 1 

ENTHALPY INCREMENTS FOR LIQUID NIOBIUM 

EXPERIMENTAL CALCULATED 
Temperature Mass      (H° - H° 8) ^HT " H298^ Dev. 

K gm 

1.1363 

j/mole 

108379 

j/mole 

107740 

% 

2738 0.59 
2746 1.7781 107232 108064 -0.77 
2759 1.6678 108520 108592 -0.07 
2802 1.5317 109995 110337 -0.31 
2812 1.6401 111865 110743 1.01 
2830 1.6965 110690 111474 -0.70 
2888 1.8309 113793 113828 0.03 
2890 1.8451 114550 113909 0.56 
2901 1.0195 114476 114356 -0.11 
2986 1.7886 118525 117806 0.61 
2989 1.5379 117659 117928 -0.23 
3011 1.9678 117767 118821 -0.89 
3101 1.7506 122031 122474 -0.36 
3141 1.5926 124638 124097 0.44 
3292 2.0276 130275 130226 0.04 

"T " H298 C (T-Tm) + Hd^m) Average Deviation 0.45% 

cn 40.6±1.0 j/mole-K Standard Deviation 617 j/mole 
P (9.70+0.24 cal/mol B-K) 

Temperature Range 554 K 
H(l,Tm) 108227±240 j/mole 

Drop Distance 26 cm 
Tm 2750 K 

Spectral Emissivity 0.317 
AHf 34570±240 j/mole 

Total Emissivity 0.33 
ASf 12.57±0.09 j/mole 

(3.00 cal/mole-K) 

P 7.6 gm/cm3 

M 92.91 gm/mole 
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TABLE 2 

ZIRCONIUM LIQUID ENTHALPY INCREMRNTfi 

-LINEAR FIT- 

Temperature 

K 

X* 
0 
H 
Y* 
L 
R 
0 
M 
S 
I 
J 

2233 
2353 
2376 
2425 
2527 
2575 
2670 
2688 
2720 
2817 
2839 

U 2933 
T 2997 
V   3048 

EXPERIMENTAL 
Mass 

0.6190 
0.3967 
0.4872 
0.9536 
0.7188 
0.4290 
0.9553 
0.9034 
0.8208 
0.9776 
1.0448 

1.167:, 
1.2760 
1.4742 

(HT " H298> 
j/mole 

78416 
84070 
85570 
87926 
91519 
93648 
97227 
97880 
99078 

102778 
103816 

CALCULATED 
(HT " H298,   Dev- 
j/mole      % 

79347 
84236 
85173 
87170 
91326 
93281 
97152 
97885 
99189 

103141 
104038 

Average Deviation 

109222 
112657 
116381 

107867 
110475 
112552 

-1.17 
-0.20 
0.47 
0.87 
0.21 
0.39 
0.08 

-0.01 
-0.11 
-0.34 
-0.21 

0.38« 

1.24 
1.94 
3.29 

-Drop distance ^2.3 cm, all ethers R cm. 

H0T - Hjgg = Cp(T-Tm) + H(l,Tm) Standard Deviation   436 j/mole 

CP ' t^.^Mj^rcai/^le-K)^6"^6 Range <fit> 60* « 
Emissivity  (6450 A)   0.118 

Total Emissivity      0.30 

Density 5.84 gm/cm3 

■ a«fM) - 750691320 j/mole 

2128 K 

m' 

T m 

AHf = 14652±320 j/mole 

ASf = 6.8910.15 j/mole-K 
(1.65 cal/mole-K) 

M 91.22 
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TABLE 3 

TRIAL FUNCTIONS FOR NON-LINEAR FIT TO 

ZIRCONIUM LIQUID ENTHALPY INCREMENTS 

^ - H2,, - a + bAT + CAT
2 (1) 

H.p - Ilzse - a + bAT + CAT2 + dAT (2) 

H.p - H2,, - a + bAT + cAT
2 + dAT"1 (3) 

^ - Hi-a - a' + bAT + CAT2 (4) 

HT - H29 8 » a' + b'AT + cekAT (5) 

H^, - H299 - a' + b'AT ♦ cAT2 (6) 

H.p - H291 - a' + b'AT + cATN; N = 4, 5, 6, 8   (7) 

AT » T - T ■ 

Prime indicates value from linear fit. 
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ZIRCONIUM L IQUID 

INTERPOLATION FORMULA 

OBS CALC T (T-Tm) 
"T " H298 HT " H298 Dev. C K j/mole j/mole « 

P 
j/m-K 

X 2233 105 78416 79347 -1.17 40. 7 
Q 2353 225 84070 84236 -0.20 40. 7 H 2376 248 85570 85173 0.47 40. 8 Y 2425 297 87926 87170 0.87 40. 8 L 2527 399 91519 91350 0.19 41.1 R 2575 447 93648 93327 0.34 41. 3 0 2670 542 97227 97298 0.08 42.6 M 2688 560 97880 98065 -0.19 42.7 S 27 20 592 99078 99436 -0.36 43.5 K 2817 689 102778 103760 -0.95 46 4 J 2839 711 103816 104787 -0.93 47 1 u 2933 805 109222 109453 -0.21 52 7 T 2997 869 112657 112981 -0.29 

mm t * 

58. 2 V 3048 920 116381 116075 0.26 64.0 

•*• H298 = 75069+320 + (40.7±0.7)x (T-Tin) + (5.82.- t0.47x10" 15)x(T-Tm) 

Cp = 40.7 (T-Tm) + 3.49 x IO" "♦ (T_T 
r 

Average Deviation 0.47% 
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PYROLYSIS OF POLYMERS AND 

SIMPLE ORGANIC MOLECULES* 

J. L. Margrave 

Abstract 

The techniques of mass spectrometry and of matrix- 

isolation infrared spectroscopy may be combined to yield 

meaningful descriptions of the species which are formed in 

the primary mechanistic steps of pyrolysis.  Decomposition 

of the hydrides of boron, carbon and silicon establish the 

presence of species like MH, MH2 and M2H as well as the 

expected MUs/ MIU, M2H6, etc.  Mass spectrometric character- 

ization then facilitates the interpretation of infrared spectra 

of such pyrolysis intermediates when they are frozen out on 

surfaces at liquid helium temperatures. 

Recent experimental work at Rice has identified species 

like Si(CH3)2/ CCI2, CCI3, CCl2Br, etc.  Such studies arc needed 

to allow reliable interpretation of pyrolysis data on hydro- 

carbon and other more complex polymers. 

♦Published, please see the following: 
1. A. K. Maltsev, 0. M. Nefedov, R. H. Hauge, J. L. Margrave 

and D. Seyferth, J. Phys. Chem. ^5, 3984 (1971). 
2. A. K. Maltsev. R. G. Mikaelian, 0. M. Nefedov, R. H. Hauge 

and J. L. Margrave, Proc. Natl. Acad. USA 68, 3238 (1971). 
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THE EMISSIVITIES OF LIQUID METALS 

AT THEIR FUSION TEMPERATURES 

D. W. Bonnell, J. A. Treverton, A. J. Valerga 
and J. L. Margrave 

Abstract 

A survey of the literature through 1969 shows an almost 

total lack of experimental emissivity data for metals in the 

liquid state.  The emissivities for several transition metals 

and various other metals and compounds in the liquid state at 

their fusion temperatures have been determined in this laboratory. 

The technique used involves electromagnetic levitation-induction 

heating of the materials in an inert atmosphere.  The brightness 

temperature of the liquid phase of the material is measured as 

the material is heated through fusion.  Given a reliable value 

of the fusion temperature, which is available for most pure 

substances, one may readily calculate an emissivity for the 

liquid phase at the fusion temperature.  Even in cases where 

melting points are poorly known, the brightness temperatures are 

unique parameters, independent of the temperature scale and 

measured for a chemically defined system at a fixed point.  One 

may recalculate better emissivities as better melting point data 

become available. 

Preceding page blank 
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THE EMISSIVITIES OF LIQUID METALS 

AT THEIR FUSION TEMPERATURES 

U. W. Bonnell, J. A. Treverton, A. J. Vdlerga 
and J. L. Margrave 

Introduction 

The use of brightness temperature as a measure of tem- 

perature is subject to an evaluation of the surface emissivity 

of the substance in question.  The ability to generate black- 

body conditions in most research applications has in the past 

made brightness temperature a secondary value, normally used 

only for monitoring purposes.  However, when one deals with re- 

fractory metals, and wishes thermodynamrc quality data concerning 

the liquid phase, blackbody conditions are no longer easily ob- 

tainable, especially if the container problem is also to be 

avoided.  Application of other method.-, of non-contact temperature 

measuremont, such as tMO color pyrometry are less convenient and 

of dubious advantage when good spectral emissivity date are 

available. 

Interest in emissivity measurements has been sporadic, 

the primary Uteratare sources of data being a review by Burgess 

and Waltenberg in IflS1, and a collection of NBS measurements 

by Roeser and Wenzel". 

The recent advent of direct applications of electro- 

magnetic levitation to drop calonmetry3 and its immediate success 

have brought the temperature measurement problem to the fore. 
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The primary source of error for property measurements in the 

2000 to 3000 K temperature range is now almost exclusively the 

lack of accuracy in temperature measurements. 

For this research/ a direct attempt to measure brightness 

temperatures at a standard wavelength for a variety of liquid 

meta.ls was undertaken.  If the brightness temperature is monitored 

as a function of time for a substance being heated during levi- 

tation, it is observed that at the point of fusion, the brightness 

temperature remains almost constant for a relatively long time. 

Experiments for several substances including copper were run at 

various heating rates, varying by nearly an order of magnitude, 

and the final value of emissivity showed no correlation with 

heating rate in any case.  This corresponds well with other ob- 

servations on substances subjected to constant heating, i.e., 

the phase change occurs at constant temperature.  By using a 

recording pyrometer and noting the brightness temperature at the 

end of this plateau, the emissivity for the liquid at its fusion 

temperature can be calculated immediately from the Wien equation. 

The advantages of levitation as a heating device have 

been pointed out3 previously.  In this application the primary 

advantage is the ability to use a relatively massive sample, 

corresponding to sizes of surfaces normally undfr consideration 

in laboratory-scale experiments.  With no container to interfere, 

the material is unaltered by its surroundings. 
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Apparatus 

The levitation apparatus has been described in dutaii 

elsewhere3.  The primary addition to the experimental arrange- 

ment is the Leeds and Northrup automatic recording pyrometer 

Model 8641-1, Serial #1720818.  The automatic pyrometer operates 

at an effective wavelength of 6450 Angstroms with a band widtn 
o 

of approximately 350 A.  Basic response time is about 1 sec. for 

0.5oC resolution at 1063oC.  The automatic pyrometer was cali- 

brated by comparison against an L i N Model 8622-C manual pyro- 

meter (Serial #1077349, calibrated by L & N by comparison with 

NBS f«»t No. 201571" reference standard, report dated 9 Dec, 

1970).  Doth pyrometers were sighted alternatively on a G.E. 20A 

pyrometer lamp.  Ten calibration points acrosu the medium range 

of the automatic machine were determined individually by each of 

two observers and a least squares line fitted to the deviations. 

The RMS error of the line is less than 2 degrees. 

The technique used for measurement was generally the same 

for all samples.  The flask surrounding the levitation coil was 

flushed for 5 to 10 minutes with pure argon which had been dried 

by passing through a magnesium perchlorate column and then de- 

oxygenated by passing over a 19" long column of fine copper 

turnings heated to 350oC.  In cases such as copper and nickel 

where surface coatings were noticed, the materials were cleaned 

with 1:1 diluted reagent hydrochloric acid, then rinsed with 

deionized water and dried with acetone.  The sample was then 

immediately suspended in the coil and power applied.  The auto- 
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matic pytometer was used to follow the passage through fusion, 

a process which took more than 10 seconds in all cases.  Each 

measurement was made with a fresh sample and every recovered 

sample showed a surface at least as bright as the material before 

levitation. 

The samples used were supplied in massive form (either 

1/4" rod, platelets, or shot).  Table I lists sources and purity. 

In all cases where more than one source was used, there was no 

difference in results attributable to source. 

Results 

The results of this investigation are presented in Table I 

The uncertainties given are in terms of precision of measurement. 

The accuracy of calibration of pyrometers in general can con- 

tribute an error of »5 - 7K.  It is expected that the higher pre- 

cision of automatic pyrometers will soon allow a much needed 

improvement in this figure.  The fusion temperatures reported are 

either those of Hultgren, Orr, and Kelley5, modified to agree 

with the International Practical Temperature Scale of 19686 or 

values which are secondary reference points of IPTS-68.  The 

brightness temperature is related to the emissivity through the 

Wien equation7.  At the temperatures involved in this work, the 

error introduced by this approximation to Plank's law is less 

than 0.1%.  Wien's law gives, for a body of emissivity E,, the 

intensity of radiation at some wavelength A, 

JX  - W-.-C^ (1) 
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TABLE I 

Substance Fusion 
Temp. 
(K) 

Brightness Temp, 
of Liq. at 
Fusion (K) 

Emissivity 
(A-0.645M) 

No. of 
Determin 
ations 

Aga (99.999%) 

Coa (99.95%) 

1235f 

1767f 
1085 

1626 

i i 

1 2 

0.082 i 

0.335 1 

.001 

.006 

12 

6 
Cra (99.95%, 

99.997%) 
2133 1891 i   3 0.262 1 .005 9 

Cub (99.9%) 1357.6f 1216 1 2 0.147 t .010 7 
Fea (99.95%) 1811 1671 1 1 0.357 ± .003 3 
Moa (99.9%) 2895 2510 i 4 0.306 i .004 8 
Nba'c (99.9%, 

99.8%) 
2744 2405 i 2 0.317 i .002 9 

Nid (99.8%) 1728f 1597 1 2 0.346 i .005 11 
Pda (99.95%) 1827f 1684 i   2 0.354 1 .005 5 
Taa (99.9%) 3256 2779 i   3 0.309 i .003 2 
Tia (99.95%) 1946 1814 + 1 0.434 4 .003 16 
Ve  (99.9%) 2178 1973 i 2 0.343 4 .004 10 
Zrc (99.9%, 

99.8%) 
2128 1918 1 2 0.318 1 .004 8 

A. D. Mackay, Inc. 

Baker and Adamson Reagent Chemicals 

Alfa Inorganics, Inc. 

J. T. Baker Chemical Co. 
eResearch Organic/Inorganic Chemical Corp. 

Secondary reference points on the IPTS-68.  The other fusion 

temperatures are taken from reference 4 by Hultgren, Orr and 
Kelley and are adjusted to the IPTS-68. 
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The relation between brightness temperature, T,., and true tern- 
B 

perature T is then 

0 

is  obtained.     Taking differentials of  both  sides  yields 

-»■ H c4 ■ til) {- ^{- *) -B • '4' 

i 

1 ±     Aln Ex 
T   TB ~   C2 

(2) 

whore C^ is 1.4 388 cm K (IPTS-68) and A is 6.45 * 10"'' en.  If 

(2) is solved for E. , 

(3) 

Dividiny   (4)   by   (3)   gives 

dEA       m        fdT L.Cj_   111*] 
-    ^   AT

Ü   iTB   i (5) 

where C2/A = 22310 K. 

Use of equation (5) shows the extreme sensitivity of 

emissivity values to small errors in brightness temperatures. 

For example, in the neighborhood of 2000 K, if the brightness 

temperature is in error by 10 K (a typical value), and if the 

nominal emissivity is 0.30, dE^ ■ .017, an error of more than 

St» Thus, the opposite side of the coin to temperature measure- 

ment being relatively insensitive to errors in emissivity is 
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that emissivity values derived from temperature measurements 

are very sensitive to inaccuracies in brightness temperature. 

Discussion 

These data were specifically produced at ■ known cali- 

bration point in order to provide stable reference values in- 

dependent of the normal problems of temperaturo stability.  For 

this reason, the reported brightness temperature is the funda- 

mental raeasurument and is specific to the fusion temperature of 

the metal under one atmosphere of inert gas. 

Reported errors in brightness temperaturo correspond to 

less than 0.? mv deviation in the measured variable recorded on 

a L s. N Speedomax H 6V chart recorder equipped with Azar uni- 

versal range and span device.  The span used for all measurements 

was 2 mv full scale and selected points across all ranges at this 

span were calibrated against a L & N Type K-3 potentiometer. 

Calibration corrections were of the order of .07 - .10 mv in the 

ranges of interest and were applied. 

The results of this research are compared with literature 

values in Table II.  Agreement is reasonable with few exceptions. 

The most notable of these exceptions are titanium and chromium. 

Reference to oxide emissivity data of Roeser and Wenzel9 shows 

the emissivities of the oxides of these metals to be considerably 

higher than the clean surface.  Titanium is very reactive at 

higher temperatures, showing an ability to oxidize even in the 

presence of trace amounts of carbon dioxide.  Observations of 
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Substance 

D Ag 

Co 
Cr 

Ctt 

. Fe 

Ta 

Ti 

V 

Zr 

TABLE II 

Emissivity 

This Research Literature 

0.082 t .001 

0.335 1 .006 

0.072* 

0.37* 

0.262 ± .005 0.39* 

0.147 1 .010 0.150*; 0. 

0.357 ± .003 0.365* 

0.306 i .004 0.40* 

0.317 i .002 0.40* 

0.346 1 .005 

0.354 i .005 

0.37* 

0.37* 

0.309 t .003 

0.434 1 .003 

0.343 1 .004 

0.318 ± .004 

0.398C 

0.65* 

0.32* 

0.30* 

. 

aReference 2 
bReference 11 
cReference 10 

• • 
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chromium after levitation melting and dropping on a cold plate 

showed the bulk material to discolor easily in open air, pre- 

sumably oxidation.  The conclusion to be drawn is that prohaMy 

the earUer measurements were of a surface sUghtiy contaminated 

with oxide, resulting in a higher brightness temperature. 

The omlssivity value from Treverton and Margrave" for 

molybdenum has changed because recalibration of the automate 

pyrometer showed a slight but significant deviation from agree- 

ment with IPTS-68. 

Measurements of niobium and tantalum are at temperatures 

high enough that questions of eguilibrium for the melting point 

and actual true measured values at other temperatures must be a 

(actor in oth r measurements (1, 2, 10).  The levitation technigue 

allows a reasonabie time for equilibration at the melting point. 

It u to be noted that for almost all the materials re- 

ported on hero, no sign of change ir. brightness tempera.ur.. was 

observed during the melting process.  The single exception was 

copper.  Even in the case of copper, however, the observed effect 

was not a change in emissivity from .10 to .15, as reported 

earlier.  The current observations showed the surface to super- 

heat slightly, settling back smoothly to a lower brightness tem- 

perature which coincided with the visual observation of the entire 

sample collapsing xnto the shape forced by the surrounding KF 

field.  .-or this reason, the stated deviation in precision was 

reported as twice the caiculated standard deviation. 
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Conclusions 

Application of the levitation phenomenon to the measure- 

ment of surface brightness shows distinct advantages and mono- 

chromatic emissivities for several liquid metals have been 

determined at their respective melting points with a 450 KHz 

generator and levitation coil.  The possible variation of emis- 

sivity as a function of phase is still subjected to question. 

Continuing work at various levitation frequencies where the skin 

depth is much larger is in projress. 
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HKATS OF COMBUSTION OF CARBONS AND GRAPHITES 

J. L. Wood and J. L. Margrave 

Abstract 

A measure of the extent of conversion to "ideal" graphite 

can be obtained by high-precision combustion calorimetry on var- 

ious samples of vitreous carbon, pyrographites, etc.  It appears 

certain that a new standard reference state graphite has been 

identified and that the heat of formation of CO? (ideal gas) 

should be 

AHf = -94,042.8 I 5.9 cal/mole 

Samples of various carbons are being sought from Professor 

E. Hucke and from other sources for combustion in a high-precision 

calorimeter, in order to place each on a relative energy scale. 

-571- 



• * 

D 
.. 

. 

. 

THE Li/CFX BATTERY AND ITS CHARACTERISTICS 

R. B. Badachhape, J. L. Wood, A. J. Valerga 
and J. L. Margrave 

Abstract 

Current approaches to the construction, characteristics 

and other aspects of the Li/CFX battery system are being re- 

viewed.  Under a new contract with the U. S. Signal Corps at 

Fort Monmouth, New Jersey, Professor Margrave and his associates 

are determining basic thermodynamic parameters for CFX of various 

stoichiometries.  New techniques for forming rugged electrodes 

are also being investigated. 

Preceding page blank 
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STRESS WAVLS DUE TO A SHORT DURATION PRESSURE PULSE 

ON A SEMI-INFINITE BODY OF LAYERED COMPOSITE 

J. A. Krumhansl and E. U. Loe 

Abstract 

The Fourier-Floquet theory for wave propagation in a 

continuum of composite material with a periodic structure has 

been developed to represent transient solutions.  For a layered 

composite half-bp^ce with displacement and wave propagation 

normal to the layers, waves generated by impact, or pressure 

applied on the surface for a limited duration, can be treated 

by the same theory.  The initial motion is analyzed by following 

the reflection and transmission of the resulting plane waves, 

for example, by the method of characteristics, until the force 

or contact ceases; and this solution then provides initial con- 

ditions for a Fourier-Floquet expansion for the subsequent 

motion.  This form may be the most convenient for investigating 

the far field solution for "head of the wave" contributions. 

Waves generated by plate slap can be investigated in this way. 

Preceding page blank 
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•TMtf WAVLS DUE TO A SHORT DURATION PRESSURE PULSE 

ON A SEMI-INFINITE BODY OF LAYERED COMPOSITE 

j. A. Krumhans1 and E. H. Lee 

Introduction 

It has been pointed out by Krumhansl1 that Floquet 

solutions2 for waves in infinitely extended periodic elastic 

composites form a complete orthonormal function .et, which can 

be utilized to evaluate the propagation of transients by means 

of Fourier-Floquet integrals.  The case of an impulsiv, delta- 

function initial velocity distribution was presented1, wh.-re 

the impulse occurred on a plane of symmetry of a one-dimensional 

lattice of equally spaced reinforcing plates, the displacement 

and propagation direction being normal to the plates.  This 

formulation permits asymptotic evaluation of the far field com- 

prising "head of the wave" components which yield the major 

contributions of the wave effect transmitted through the com- 

posite.  Since transient loading of a composite commonly occurs 

on an external surface, we exploit the fact that waves generated 

by such a time dependent short duration pretSOT« distribution on 

a surface can be analysed within the framework of the infinitely 

extended body theory1 when the surface is a plane of symmetry 

of the lattice.  This  s achieved by first considering plane 

wave propatation with reflection and transmission at the matrix- 
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ruinforcement inLortaces for the half space, say, x ^ 0.  This 

is easy to evaluate for the short duration of load application, 

but would be cumbersome for long times because of the multiplicity 

of reflections and transmissions which continue to occur.  If a 

tensile variation of surface traction, the negative of the pres- 

sure pulse, is applied to the half-space x < 0, the surface 

velocity at any time will be the sari.e for both half-spaces by 

symmetry and the linearity of the problem.  Thus the two half- 

spaco surfaces will move with tho same velocity and displacement. 

They can thus bo considered to be in contact and welded tocjether 

without modifying the stress wave distribution in either, so that 

the displacement and velocity at any instant after pressure 

cessation can be used as initial values for the full space, in 

order to evaluate the subsequent motion^  Since surface forces 

on the half-spaces are then no longer acting, no body forces at 

the weld arist i:i the combined problem, so that the theory of 

can be applied. 

Because these "initial" distributions of stress and 

velocity are finite in magnitude and spread over one or more 

cells of the composite, the Fourier-Floquot integral is likely 

to exhibit practical convergence, the higher modes not being too 

highly stimulated.  This form of the solution will permit study 

of the far field by asymptotic methods, with the determination of 

"head of the wave" contributions.  Although these effects would 

eventually appear in the reflection - transmission procedure 

mentioned above, they are likely to lag far behind the precursor 
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and thus involve so many interactions that the Fourier-Ploquet 

approach is likely to be advantageous in determining far field 

response.  It is perhaps worth pointing out that use of the delta- 

function initial velocity solution to build up a transient so- 

lution by super-position, in the usual manner, is not applicable 

in its simplest form in the present case, since the basic solution 

depends on the location of the delta-function spike relative to 

the lattice configuration and is thus not translationally in- 

variant. 

Wave Transmission and Reflection Solution 

Consider a pressure variation p (t), t ^ 0, on the surface 

of a semi-infinite block, x > 0, of layered composite, as shown 

in Fig. 1.  The matrix and reinfouement are considered each to be 

homogeneous linear elastic materials, and hence waves transmitted 

through them satisfy the wave equation: 

32u    1 32u 
DtT ■ 0 (1) 

where c., the wave velocity, is equal to ^ in the matrix and cf 

in the reinforcement, and is related to the elastic modulus for 

waves of one-dimensional strain:  n. = A. + 2^. and density p., 

by the relation: 

pici ^ (2) 

for i equal to m or f in the two materials, respectively.  The 
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A. and p. are the Lame elastic constants.  Perhaps the most con- 

venient way of evaluating the waves generated by the applied 

pressure p(t) in Fig. 1 is to utilize the theory of characteristics 

(see Ref. 3, p» 119, for example) which determines the relations 

o.c.v ± o = constant (3) Ki i 

on 

dt    i 

where v is the particle velocity 3u/3t and a is the stress.  Thus 

for the initially undisturbed composite block, Fig. 1, with a 

layer of matrix material of thickness (a - b)/2 at the surface 

(since the surface is considered to be on the centerline of a 

matrix slab, which is of width [a - b]) the stress field for 

t < (a - h)/2cm  is given by 

a(x,t) = -p(t - x/cm) ,   x < cmt 
(5) 

=0 '  x > cmt 

since tensile stress is considered positive, and the velocity by 

v(x,t) ■ -a(*>t)/pmcm (6) 

These results follow from (3), since the constant for the lower 

sign is zero because the body is initially undisturbed before the 

pressure is applied, and thus both v and o are zero throughout 

the half-space at t » 0. 
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For the half-space x < 0 and tensile surface traction of 

magnitude p(t), the dependent variables are related to the above 

by evenness as a function of x for velocity v and displacement u, 

and oddness for the stress. 

Suppose, for example, that p(t) has the constant value p0, 

applied at t = 0 and removed at t = tj < (a - b)/2c .  Then for 

t = t , the stress displacement and velocity in the full space 

are as illustrated in Fig. 2, and these could then be considered 

as "initial" conditions for the whole space, which will determine 

the motion of the half-space x > 0 with the pressure applied to 

its surface. 

If the pressure application continues for t > (a - b)/2c , 

the stress wave reaches the first interface at x = (a - b)/2 while 

the pressure is still acting.  Reflection and transmission at this 

interface must therefore be included in the analysis of wave 

propagation which must be extended through the time until the 

surface pressure ceases.  We must therefore add to the character- 

istic relations (3) and (4) the requirement that the displacement 

and traction must be continuous across each interface, thus 

u({a/2 ± b/2 ± na)+,t] = u[(a/2 ±  b/2 + na)",t]  (7) 

a[(a/2 ± b/2 1 na)+,t] ■ a[(a/2 ±  b/2 t na)",t]  (8) 

where 

o(x,t) - nie(x,t) « n^u/ax (9) 

■ 

and n !■ an integer.  Since the arguments in (7) and (H) are 
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inLc-rfacG positions (sec Fig. 1), n. takes on the values rif and 

n  on either the plus or minus sides of the interface.  In (9), 
m 

E denotes the strain. 

Combination of (3), (4), (7) and (8) permits the solution 

to be extended indefinitely, but the multiple reflections and 

transmissions at the interfaces associated with repeated appli- 

cation of (7) and (8) with n = ±1, ±2,   etc., can become cumbersome 

as t increases.  For short time loading, no difficulty arises.  A 

computer code based on such a procedure IT mentioned by Lundergnn 

and Drumheller1*. 

As described in the Introduction, as soon as the applied 

pressure has ceased, this solution can be used for initial values 

for displacement and velocity to express the subsequent motion in 

Floquet form1.  This formulation is presented briefly in the next 

section. 

There is no need to limit the characteristic solution 

presented in this section to prescribed surface pressure.  The 

solution for prescribed velocity can be obtained from (3) and (4) 

in a similar manner, but after some prescribed time the surface 

must be permitted to move freely without force applied, so that 

the problem tor the two combined half spaces is free from body- 

force for the Floquet representation part of the analysis. 

Moreover, impact due to plate slap can also handled in this way. 

The impact surface, x = 0, would become an additional interface 

if the impacting plate were not of matrix material, otherwise it 

would simply be a surface incapable of transmitting tensile stress. 
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The characteristic solution with free rear surface of the im- 

pacting plate separates from the surface of the half-space.  This 

time could be used to provide initial conditions for the two half- 

space problem, the solution of which can be expressed in Floquet 

form for the subsequent motion.  Thus this approach can bo applied 

to a variety of loading situations. 

Tourier-Floquet Representation 

As shown1, floquet wave solutions form an ortho-normal 

sot according to 

1 p(x)uv(x,q)uv( (xtq')dx  - 6vv,6(q - q')       (10) 

where q and q' are wave numbers and v and v' denote integer labels 

for the denumerable sequence of modes.  The solution of (1) and 

the interface conditions (7) and (8) for prescribed initial values 

of displacement, u(x,o), and velocity, u(x,o), for the extended 

composite -<- < x < <», can be represented in the form: 

Tr/a 

u(x,t) - I   I        [Cv(*,q)e
iwv^)t 

v -./a 

+ cv(-,q)e"i(Vq,t]uv(x;q)dq (11) 

The coefficients are given by the usual inverse relations: 

r     * 
I p(x)uv(s;q)u(x,0)dx - cv(+,q) + cv(-,q)      (12) 
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p(x)uv(x;q)u(x,0)dx - iu)v (q) (cv (+,q)-cv (-.q) 1  (13) 

mm 

Note that for convenience a new time origin has been selected, 

and the "initial" displacement and velocity distributions 

correspond to t ■ t, of the characteristic solution, which is 

Lho time of cessation of surface pressure or a later time.  Note 

also that u(x,t) of (11) is complex, and the physical displacemont 

ia given by the real part.  Similarly for other dependent vari- 

ables.  The functions uv(x,q) in (10) are the Floquet solutions, 

which have a real part even in x, and an imaginary part odd in x  . 

The asterisk in (10) denotes the complex conjugate.  Since u(x,0) 

and u(x,0) are even in x, (12) and (13) determine that cv(+,q) 

♦ c (-,q) is real, and cv(+,q) - cv(-,q) is pure imaginary, hence 

cv(-,q) ■ c*(+,q) (14) 

Thus the two terms, in the square brackets in (11) are complex 

conjugates, hence their sum is real.  Since the real part of 

u (x;q) is even5, its derivative with respect to x, the corres- 

ponding strain, is odd, and hence will be zero at x = 0, since 

strain is continuous there.  The stress given by (9) will thus 

also be zero for x = 0, as we expect it to be, since for x > 0, 

the solution is to apply for the half-plane after the surface 

pressure has ceased to act. 

As shown1, the form of solution (11) lends itself to 

asymptotic analysis by stationary phase or steepest descent 
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methods, and so is convenient for studying the response to the 

surface impact in the far field. 
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DETERMINATION OF STRESS PROFILES FOR WAVES 

IN PERIODIC COMPOSITES 

L. Bevilacqua, W. Kohn, J. A. Krumhansl 
and E. H. Lee 

Abstract 

Floquet or Bloch wave theory provides a convenient basic 

set of functions for representation of the propagation of trans- 

ient elastic stress waves in periodic composites (Krumhansl, 

ARPA Mat. Res. Council Report, p. 175, 1970).  Variational prin- 

ciples for computing dispersion relations and hence phase veloci- 

ties generate a banc, structure of pass and no-pass frequency bands 

(Kohn, Krumhansl and Lee, ARPA Mat. Res. Council Report, Vol. I, 

Paper No. 2, 1969 and ASME Preprint 71-APMW-21, to appear in 

Jour. Appl. Mech.)  Dispersion curves (frequency versus wave 

number) were accurately evaluated for laminar composites by using 

smooth Fourier series test functions for displacement in a Rayleigh- 

Ritz approximation procedure, but the corresponding stress profiles 

were unsatisfactory since the required continuity of stress at the 

inclusion-matrix interface was ruled out by the use of the smooth 

test functions for displacement and corresponding continuous strain 

profiles. 

In this paper exact stress profiles are calculated for 

I]       waves propagated normally to the laminae, and satisfactory approx- 

|1 MM»** .587. 

0 



imations to these are generated with the extended variationai 

principle which permits independent test functions to be used 

in the matrix and inclusions.  An augmented plane wave approach 

in the Rayleigh-Ritz procedure was adopted in which exact so- 

lutions of the wave equation were used as component test functions 

in the filament.  It was found that with this procedure, accuracy 

was essentially independent of the ratio of elastic moduli of 

the inclusion and matrix.  The variationai approach is applicable 

to two and three-dimensional composite configurations, which are 

not amenable to exact evaluation. 

. 
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A PROPOSED METHOD FOR THE EVALUATION 

OF THE THERMODYNAMIC PROPERTIES OF THE 

GLASSY CARBON-GRAPHITE EQUILIBRIUM 

. 

n 
■■ 

L. E. Hucke and S. K. Das 

Abstract 

. 

(k, available thermodynamio data for the qraphite- 

carbon oxide equilibrium are critically reviewed, together with 

kb. meager data presently existing for heat capacity and heat 

of combustion of glassy carbon. 

Five different, experimentally feasible, solid oxide 

cells and one molten salt cell are proposed to measure directly 

and more accurately the equilibrium thermo-chemic.l properties 

of the following reactions in the range of 600-1000-C. 

co(g) + WJ (g) - coi (g) 

c      + co^g) ■ 2C0(g) 
graphite 

c ,    * CO,(g) - 2C0(g) 
'-glassy 

0cglassy ' Cgraphite 

The above data can be combined with low temperature heat 

11       capacity data for gl.ssy carbon and graphite to yield configu- 

ration entropy aad enthalpy values of glsssy carbon relative to 

graphite.  The configuration entropy value Is a direct measure 
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of the degree of disorder and can be used to compare with struc- 

tural models of ylassy carbon deduced from other physical 

measurements such as X-ray and neutron diffraction. 
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I.  INTRODUCTION 

The most fundamental characteristic of any material is 

its structure.  Once the structure is precisely established, 

all the known properties of that material can be explained and 

the unknown ones can be estimated.  Whenever a new material is 

developed, it is first subjected to a series of physical and 

mechanical tests.  These data are useful, but they do not give 

much insight into the basic structure of the material.  The use 

of X-ray or other probes yield much structural information, 

but not enough to explain or estimate every property of that 

material.  On the other hand, thermodynamic data can explain 

many of the gross properties of a material without utilizing 

detailed information.  Precise thermodynamic data is, therefore, 

a basic tool in understanding, processing, and utilization of 

a material. 

A new form of pure carbon has recently been prepared 

which, because of its similarity in appearance to glass, has 

been called "glassy" carbon.  The glassy carbon is intermediate 

between glass and ceramic in many respects and can be adequately 

described as a conducting ceramic.  At the time when glassy 

carbon was developed, its gas-impermeability at high temperature 

met a timely demand of the atomic energy industry.  Now, however, 

it has a variety of new applications including outstanding 

promise as a biomaterial. 

Only very sketchy and conflicting reports have been 
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published on the atomic structure of the glassy carbon.  Al- 

though its heat of combustion and heat capacity at low temper- 

atures have been measured, these data are not sufficient to 

calculate the thermodynamic properties of its transition into 

graphite.  So far, no direct measurements of this transition 

have been published. 

At present, there are no satisfactory criteria to 

characterize samples of glassy carbon.  Activity of carbon in 

glassy carbon may be taken as one of the consistent criteria 

which makes one sample have different properties than others. 

The data on activity would, therefore, lead to a better pro- 

cessing, property control, and further systematic development 

of this material to suit wide-spread applications.  Any attempt 

to measure the standard Gibb's free energy change of glassy 

carbon-graphite transition would be very significant and the 

outcome would be a contribution to this field.  The derived 

entropy and enthalpy change would give a long awaited clue for 

a better understanding of the structure, hence, all other pro- 

perties of this rather unusual material. 

The objective ol the proposed research will be the 

determination of activity of carbon in glassy carbon with 

respect to graphite as a standard state in the temperature 

range of 600-1000oC.  If the high temperature heat capacity 

values of glassy carbon become available in the future, the 

entropy difference values to be deduced from the outcome of 

the proposed research could be used to compute the entropy of 
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glassy carbon at absoiute zero, and to teU whether glassy 

carbon is a perfect crystalline material U its internal equilx- 

brium or not. 
Probably the most direct method of measuring activity 

o£ carbon would be to accurately analyze the CO-CO, gas mixture 

in equilibrium with glassy carbon by a mass spectrometer.  The 

only objection which outrules this method is the problem of 

getting the equilibrium gas samples out of the glassy carbon- 

CO-CO, system.  It is anticipated that the gas samples would 

be subjected to thermal diffusion and convection phenomena 

„Mch would ultimately result in unrepresentative gas samples, 

in the proposed research, two electrochemical methods 

are outlined.  One method involves solid electrolytes and the 

other a fused salt electrolyte.  Both electrolytes are capable 

cf giving accurate activity data. The solid electrolyte cells 

would measure the partial pressure of oxygen in equilibrium 

with classy carbon and carbon oxides, which would then be re- 

Uted to activity of carbon in glassy carbon with respect to 

graphite as a standard for carbon. The fused salt electrolyte 

cell» would directly yield activity data. A cell, once assembled, 

can be studied over the entire temperature range of interest, 

.urthermore, the attainment of equilibrium at each temperature 

t, directly checked on each cell. The precision of the recorded 

emf and temperature can be related to the uncertainty in activity 

data. 
It will lecome clear later in the text that the appli- 

-593- 



cation of the solid electrolyte method would need the standard 

free energy change of reactions 1 and 2. 

CO(g) + S0,(g) - COjig) (1) 

C(s) + C07 (g) - 2C0(g) (2) 

The best available data on the standard free «n.rgy change of 

reactions 1 and 2 have been indirectly computed using calorx- 

metric and spectroscopic data.  The directlv measured data by 

CO/CO, gas equilibration method are either less accurate than 

indirectly calculated values or have only historical importance. 

In view of the great importance of the equilibrium constants of 

reactions 1 and 2 in the problems of process metallurgy, it is 

a challenge to determine the values of the reaction constants 

with a more refined technique and to reach or even to exceed 

the accuracy deduced from calorimrtric data.  Solid electrolyte 

colls are capable of accurately measuring those equilibrium 

constants and it is anticipated that the proposed measurements 

will be a significant contribution to the thermodynamic liter- 

ature. 
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II.  LITERATURE REVIEW 

A.  Carbon Oxides, Graphite, and Glassy Carbon 

1.  Carbon OxiJes 

The first study on the thermodynamics of the producer 

gas reaction was done by Boudouard* in 1901.  He measured the 

equilibrium CO-CO» gas composition of reaction 2 as a function 

of tompcraturo at only atmospheric pressure.  Shortly after 

Uoudouard's classic study, Rhead and Wheeler''1, Jellinek and 

Uiethelm", and Dent and Cobb*  remeasured the equilibrium 

CO-COt gas composition as functions of both temperature (700- 

1100*C) and pressure (0.5-4 atms.).  They passed C02 or CO gas 

over purified wood charcoal powder and left the system at a 

constant temperature and pressure for a long time to achieve 

equilibrium.  Samples of gases were drawn from the system at 

regular intervals of time and the constant gas composition 

over a long period of time was used to calculate the equilibrium 

constant of reaction 2. Their data are in accordance with the 

Le Chatelier's principle, e.g., a decrease in the total pressure 

and an increase in the temperature increases the proportion of 

carbon monoxide in the C-CO-CO, system in equilibrium at a constant 

temperature and pressure respectively. 

These and certain indirect studies were reviewed by 

Chipman* to obtain an equation representing the average experi- 

mental results.  The position of the equilibrium line (Log K vs. 

1/T) was determined in large measure by the 1911 results of 
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Rhead and Wheeler3, an unfortunate choice since there is reason 

to believe that their 1910 data are more dependable.  The experi- 

mental results in the range 800-1000oC were plotted.  Below 

800oC -:.e  reaction is so slow that the attainment of equilibrium 

is doubtful; above 1000°C the concentration of CO, is below the 

range of accurate analysis.  The principle sources of error 

include non-uniformity of temperature and inaccuracies in its 

measurement, and limitations in accuracy of gas analysis. 

Thermal diffusion, if present, would yield a too-low value of 

the equilibrium constant.  Deposition of carbon from the 

effluent gas sample would likewise lower the value of the 

equilibrium constant. 

In the 1910 series of Rhead and Wheeler? the thermo- 

couple was embedded in the carbon specimen, whereas in the 

1911 series it was outside the reaction vessel in contact with 

the furnace tube.  They pointed out that in this second series 

the carbon surface may have been at lower temperature than 

measured.  The furnace used in this study was too short to 

provide a satisfactory zone of constant temperature.  The 

thermocouple measured the temperature at the hottest point and 

it seems altogether possible that parts of the reaction bulb 

were more than 20° lower in temperature.  To sum up, even the 

best available data of Rhead and Wheeler2'3 may be considered to 

be of historical importance only. 

In 1940, the calorimetric data on the heat of combustion 

of graphites (Reaction 3) were measured by many investigators7. . 
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C(8) + 0? (g) » C02 (g) (3) 

These values are in excellent agreement with all recently 

published figures8.  The heat of reactions 2 and 4 were cal- 

culated using directly measured values of heat of reactions 

I7 and 3'. 
* 

C(s) + «j02 (g) » CO(f») (4) 

Utilizing the available entropy and enthalpy values of oxygen, 

carbon monoxide, carbon dioxide (determined from statistical 

calculations, spectroscopic, molecular, and heat capacity data), 

and graphite (deduced from the calorimetric measurements of the 

heat capacity and the concept of the third law of thermodynamics), 

the standard Gibb's free energy change of reactions 1-4 have 

been carefully computed and compiled many timea by many authors. 

However, every author lists his own estimate of the accuracy in 

the computed free energy values.  The estimated accuracy varies 

from ±20 cal/mole to 11 Kcel/roole.  All the heat of combustion 

and free energy values have been critically examined in Appendix 

I.  The estimate of AGJ000 values according to the present 

calculation are -46,770 1 119, -1,089 t   338, -94,629 i   101, 

-47,859 1 220 cal/mole for reactions 1-4, respectively. 

Richardson and Dennis10, Smith17, and Chipman and Rist11 

performed many experiments to measure carbon activities in 

liquid and solid Fe-C alloys, which were then extended by Chipman 

and Fuwa12 to numerous ternary alloys.  In all the experiments 
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the same mef-hod of CO-CO2 gas equilibrium was used.  In calcu- 

lating the carbon activities in iron alloy, with resject to 

graphite as a standard state, one requires the equilibrium 

constant of the producer gas reaction.  When Richards-on10 and 

Chipman1l''2''6 were posed with this problem, they preferred to 

use the equilibrium constant available from indirect calculations 

rather than either using Rhoad and Wheeler's2'3 value or re- 

measuring the equilibrium constant themselves.  Probably they 

realized that the reason which prevented Rhead and Wheeler2'3 

from getting accurate values of the equilibrium constant of the 

producer gas reaction was not only the lack of careful experi- 

mentation, but also the inherent limitation of the gas equili- 

brium techniques.  In one of his recent articles, Wagner13 has 

clearly stressed the need of determining the equilibrium constant 

values of the producer gas reaction directly with a more refined 

technique and to reach or even to exceed the accuracy of the 

equilibrium constant values deduced from calorimetric and 

spectroscopic data. 

2.  Graphite 

The hexagonal crystal structure of graphite, as first 

proposed by Bernel31 in 1924, is shown in Figure 1.  It consists 

of carbon atoms arranged as hexagons in flat parallel sheets, 

the distance between adjacent sheets (which are held together 

by van der Waal's forces) is approximately 3.35 A0, while that 

between atoms within a sheet (covalent bonded) is about 1.42 A0. 

The layers are packed so that half of the carbon atoms in one 
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Figure 1.  Structure of the hexagonal form of graphite 
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Figure 2.  Structural Model for Glassy Carbon 
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Uy«r UM ov.r th« «ld-po4nl. of th* h.«^ont  in th« no« Uyr. 

tlw «toM in th« third Uy«r bom« •ituat.d dir.ctly «bov« thoM 

»n th» first  Uy»r.    Thi« it th» «l^b -rr^o^nt or iMMfMl 

•tructur«.    Another •tructuro.   in «Hiich th« position of th« 

third  Uy«r with r«sp«ct  to th« second  Uy«r   Is th« ssas «s thst 

of th« sscond with ^sps^t  to th« first,  th« sbcsbc srt«n9«a«ni 

or rhoMwhodrsl structur«. occurs to th« «xtnnt of « f«w i^rcsnts 

in nost ss«|>l«s of «rsphit«.    Orsphit« is notod for Its highly 

snisottopic chsrsctonstics. 

Th« physicsl, wchsnicsl. «nd thvnodyrumic prop«rtl«s 

of «rsphit« hsv« b««n Mssurvd. csloulst«d. snd co^il«d «sny 

tiMs by MMMl  suthors. ••••*."    u. ^^ cspscity in th« 

rwui«. I  to 20*K hss r«c«ntly b««n th« ob)«ct of  intonsiv« 

theor«tlcsl snd «sperlsvntsl  inv«sti«stlofis.     In racont JAMAf 

Tsbl«s'%.  th« to« t«sv«r«tur« Cp ««siumonts of  ft«««* «^ 

l^srl■sn'•   tf to 4«li snd 10- to 10-lci snd of fisSorto snd 

Michols"   Cl«  to 20-R) w ,oin«J «oothly «ith th« C   mssr«. 

■MM of teSorbo and Tyl«rM.    Cp ««Im sbov«  100-K «« « tsk«n 

fro* Mlml  fturnsu of ttsndsrds topurt ftf2l.    N«st csps(.ity 

vsluc tbove  I000«R ^r« sdjustsd to «iv« «ooih mults.    C 

vsluss sbov« 4000*K hsv« b««n «•tin«t«d. 

3«    OUssv C«rbon 

Csrbun «sists  in »sny foras,  but of  th«s« only tuo« 

dlsKinü snd «rspnit«.  csn b« co«pl«t«ly chsrsci«ri««d. snd 

th«s« sr« tru« sllotropssi  both occur in« nsturslly.    A «id« 

rsi*« of srtificlsl buU csrbons hss b««n pr«psr«d for indus- 
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trial ut« but these materials are basically graphitic in 

structure or may bo qraphitized readily, and their properties 

'■.■).. dtfqroo <<\   graphltitatlon) can bo controlled to some 

oKlent to suit particular application. 

In the past ten years, it has been found that several 

cross-linked polymers can be carefully decomposed so as to 

yield relatively massive shapes of a highly disordered non- 

.;r.iph i tiaung carbon that has been called "glassy", "glass-like", 

or ■vltreou•■.,,•,, 

It is a very pure form of carbon with impurity content 

of lost than 200 ppm.  Its name stems from physical appearance 

and not fro« a detailed knowledge of the structure. The 

physical appearance of these materials resembles black glass, 

particularly on fracture surfaces.  It combines some of tho 

properties of glass and silios with soaw of those normal 

industrisl csrbons.  It has been generally noted that the re- 

sulting product depends on the originsl polymer composition 

(polyfur furyl alcohol and phenolic rosin are most common), 

polymsritod structure, the highest temperature of the heat 

trostasnt operation, and the rats and other conditions of 

thermal decomposition. 

The fsbrlcstlon of glsssy csrbon involves s thormosottina 

organic rosin proparstlon, moulding the shape, and a pyrolysis 

operation.  Shapea sro produced to the net dimension by Incor- 

porsting s unifoim shrinkage factor into the mold design. 

The propertios distinguishing glassy csrbon fro« the :: 
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trial use but these materials are basically graphitic in 

structure or may be graphitized readily, and their properties 

(e.g., degree of graphitization) can be controlled to some 

extent to suit particular application. 

In the past ten years, it has been found that several 

cross-linked polymers can be carefully decomposed so as to 

yield relatively massive shapes of a highly disordered non- 

graphitizing carbon that has been called "glassy", "glass-like", 

or "vitreous".32'37 

It is a very pure form of carbon with impurity content 

of less than 200 ppm.  Its name stems from physical appearance 

and not from a detailed knowledge of the structure.  The 

physical appearance of these materials resembles black glass, 

particularly on fracture surfaces.  It combines some of the 

properties of glass and silica with some of those normal 

industrial carbons.  It has been generally noted that the re- 

sulting product depends on the original polymer composition 

(polyfur furyl alcohol and phenolic resin are most common), 

polymerized structure, the highest temperature of the heat 

treatment operation, and the rate and other conditions of 

thermal decomposition. 

The fabrication ot glassy carbon involves a thermosetting 

organic resin preparation, moulding the shape, and a pyrolysis 

operation.  Shapes are produced to the net dimension by incor- 

porating a uniform shrinkage factor into the mold design. 

The properties disti-guishing glassy carbon from the 1! 

: 
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more common forms of the element includes nigh strength« low 

density, high hardness, resistance to corrosion and air oxidation, 

low impact strength, and above all, Isotropie characteristics 

even in the fibrous form.  The typical physical and mechanical 

properties of glassy carbon33"3* are given in Table I.  One of 

the most striking differences between glassy carbon and con- 

ventional graphites is its extremely low permeability to qascs, 

comparable to borosilicate glass.  Th>j internal pore structure 

of gJassy carbon is non-communicating, quite small in size, and 

uniformly dispersed.  These factors make glassy carbon attractive 

for high temperature uses.  One class of use has been in the 

area of biomaterials where it has shown outstanding promis. for 

compatibility in i wide range of uses in the human body such as 

heart valves, blood pumps, bone bridges, etc.i'lt 

In spite of the extensive investigation conducted on 

this rather unusual material, only very sketchy and conflicting 

reports have been published on the atomic structure of glassy 

carbon.  The present understanding is that glassy carbon would 

be made of small regions consisting of graphite-like atomic 

arrangement, stacked up in the c direction in a random a?anner. 

Based on the X-ray diffraction studies, Noda et al.38'" 

concluded that in addition to the trigonal bonding typical of 

the graphite structures, there were also tetrahedrally bonded 

carbon atoms, such as in diamonds, which constitute the main 

part of the criss-cross linkages which link graphite-like layers 

in a random way.  Very recently, Jenkins and Kawamura1*0 have 
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TABLE  I:     Typical  Physical  and Mechanical  Properties  of 
Glassy Carbon 

Property Unit Value 

Apparent density grm/c.c. 1.43-1.50 

Apparent porosity % 0.2-0.4 

Helium gas permeability cm2/sec io-,2-io-v 

Hardness moh 4-5 

Tensile strength psi 15,000-29,000 

Compressive strength psi 86,000-200,000 

Youncf's modulus psi 3.4xl06-4.0*106 

Poisson's ratio dimensionless 0.1 

Izod iMpact strength in.-lb/in.-notch 1.2 

Thermal expansion per 0C 2xl0-6-5*10-6 

Thermal conductivity cal/cm/0C/sec 0.010-0.020 

Electrical resistivity ohm-cm aosio-^oxio-14 

Flexural strength psi 13,000-22,000 

Shear modulus psi 1.4xl06- 1.6xl06 
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proposed a structural model for the network of ribbon stacks 

in glassy carbon which is schematically shown in  Figure 2. 

The interlayer spacing decreases and the crystallite 

size increases with an increase in the heat trea i.mont tempera- 

ture.  It can be said that the graphitization, that is to say, 

the developement of a graphite-like layer structure, proceeds 

in glassy carbon with heat treatment.  However, giasdy carbon 

is a typical non-graphitizing carbon because the progress of 

its graphitization is very little in comparison with that of 

graphitizing carbons. 

The heat of combustion of glassy carbon {Reaction 3) 

at 298.15aK has been measured by Lewis et al.1*1  The measure- 

emnts were made in an aneroid bomb calorimeter and the reported 

value is 95,277 calories/grm-mole (94,054 cal/grm-mole for 

graphite) with a standard deviation of It cal/grm-mole.  The 

mean bond energy in glassy carbon is clearly much less than in 

graphite, and this could well be attributed to the presence of 

an appreciable fraction of carbon-carbon bond in a strained 

state.  Takahashi and Westrum1*2 have reported the heat capacity 

of glassy carbon in the temperature range of 5 to 350oK.  Their 

results parallel that of pyrolitic graphite in showing an 

approximate f* dependence up to 30oK suggesting that the 

structure of this material may involve microdomains of lamellar 

graphite.  Although a definative conclusion regarding the 

structure of glassy carbon is still precluded at present, 

Takahashi and Westrum"2 concluded that graphite type structure 
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^      seems favored, rather than an Isotropie three dimentional random 

network configuration of carbon atoms such as that proposed by 

Furukawa. **3 

No literature, either direct measurement or indirect 

computation using physical and thermal properties, on the thermo- 

dynamics of glassy carbon-yraphite transition has been published. 

Utilizing the available thermodynamic data, a rough estimate of 

the thermodynamic properties of the glassy carbon-graphite and 

diamond-graphite transitions at 298.150K have been shown in 

Appendix II* 

B.  Solid Oxide Electrolytes 

Solid oxide electrolytes have experienced an intense 

level of activity since the rebirth of interest supplied by 

Kiukkola and Wagner's paper-5 involving solid electrolytes. 

Within the last fifteen years solid oxide electrolytes have 

been used over the temperature range of 400-1600^ to measure 

oxygen activities in electrodes of solids, liquids, and gases. 

Independent of any specific knowledge of the mechanism 

of ionic conduction in a crystalline electrolyte which exhibits 

exclusive ionic conduction (defined at tion > 0.99), a simple 

consideration of energy conversion provides the relationship 

[1       between the reversible cell potential E and the standard Gibb's 

free energy change AG of the virtual chemical reaction of the 

cell I, 

: 

D 
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p ^/aolid oxide electrolyte/p,11 (U 

AG - -nEF - RT In 
P  "^ 

p » 
(5) 

where n is the equivalent of charge passed through the external 

circuit, F is the Faraday's constant, and po and po  are the 

oxygen partial pressures of two electrodes.  The thermodynamic 

quantities of the left and the right hand eiactrode of the cell 

under consideration are designated by the Roman superscripts 

and subscripts I and II, respectively.  The application of the 

Gibbs-Helmholtz relation to the temperature dependence of the 

cell voltage provides values of AH and AS of the virtual cell 

reaction. 

At present, the values of AG0 deduced from emf measure- 

ments according to equation 5 is superior to values of AG0 ob- 

tained with the help of other methods.  The accuracy of this 

type of measurement is of the order of il mV corresponding to 

an uncertainty of the order of 150 calories/mole in AG0, where 

as the uncertainty of AG0 obtained with the help of calorimctric 

measurements is much higher in view of the uncertainty of 

AHig8 ,- and the heat capacity values. 

While electronic conduction in aqueous electrolytes is 

always negligible, crystalline compounds exhibit partial 

electronic conductivities which are rarely negligible. A few 

binary and ternary compounds exhibit oxclusive ionic conduction 
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and thin conduction Is Umlted to a spoclfic ranqo of metal or 

non-metal chemical potentials. 

If a compound should contain in solid solution an ion 

of valence lower than those of the host matrix, then the equi- 

librium defect concentration may be altered greatly.  This 

mechanism is often used intentionally to introduce or enhance 

predominant ionic conduction in a compound. 

Both ZrOj-lS mole percent CaO and Tho,-15 mole percent 

YOI.I, the most commonly used solid electrolytes, are known to 

have a CaPa-type structure where Ca'* and Y,+ ions, respectively, 

substitute directly on Zr"4* and Th"4 sites giving rise to a 

substantial fraction of vacant oxygen sites.%? This maintains 

the electrical neutrality in the compound. 

Of prime Importance in the successful application of 

ZrOa-CaO and ThOa- Mi«| electrolytes is the knowledge of 

adequate information about the range of temperature and corres- 

ponding oxygen partial pressure over which each electrolyte 

exhibits predominantly ionic conduction. The criterion for the 

predominantly ionic conduction at a given temperature is a p0}~ 

Independent total conductivity at that temperature. This is 

established experimentally and is represented as a Kroger and 

Vink type of plot. 

Patterson et al."' measured the electrical conductivity of 1. 
both Zro.ti Ca,.!! 0|«M and Tho.i» Y#.i$ Oi,»a» electrolytes 

under various ambient conditions and suggested p  lower limit 

for exclusive Ionic conduction. Their data suggests p0> lower 
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limUi of lCra,, lO-2', lO-27, 10-2S and 10-2$ atmospheres 

at 800, 850, 900, 950, and 1000oC, respectively, for the 

ZrOj-CaO electrolyte.  The corresponding p  lower limits for 

the ThO.- YOi.s are considerably lower.  Stnele 

and Alcock',•, as well as Schmalzriod^,, report higher oxygen 

partial pressures for the lower limits of Zr02-CaO electrolyte 

(about lO'1* and 10'71  at 1000oC, respectively).  Patterson50 

has recently presented the conduction domains for a number of 

known solid electrolytes, deduced from various conductivity 

and galvanic cell measurements, in the form of conduction 

domain maps in log po vs. 1/T space.  His results for tion 

> 0.99 are shown in Table II. 

C.  Fused Salt Electrolyte 

Hawkes and Morris"* have recently employed the following 

galvanic cell in the temperature range of 800-1000oC to obtain 

carbon activities in Fe-C alloys: 

(Fe-C) alloy/CaCa, CaC£.2 U)/C (graphite) [II] 

The electrolyte used was a fused salt solution of 5-10% calcium 

carbide in calcium chloride.  Their data reasonably matched 

with those obtained by gas equilibration methods using CO-CO2 

and CHu-Ha gas mixtures.  Based upon X-ray examination of crystals 

of calcium carbide, carbon is believed to be present in the 

electrolyte as the so called acetylide ion, Cf". 
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D.  Thermodynamic and Kinetic Considerations 

There are few specific criteria to be satisfied for a 

realiable and meaningful measurement employing electrochemical 

techniques: 

!•  Thermodynamic considerations 

The electrolyte should be an exclusive ionic conductor 

of the ion of interest in the range of temperature and activity 

of the element prevailing in the experiments. 

In the experiments using solid electrolytes (to be 

discussed later) the oxygen partial pressures of the systems 

would be about lO"10 to KT1' atms. at 1000oC and about lO"2" 

atms. at 600*0.  In this range of temperature and oxygen partial 

pi ssure, even zirconia-calcia electrolytes are exclusively 

it »ic conductors of oxygen ion8.',•  However, according to Steele 

and Alcock^• and Patterson*0, an oxygen partial pressure of 

10"" atms. at 1000oC is almost the lowest partial pressure at 

which the airconia-calcia electrolytes still behave as ionic 

conductors.  In that case, thoria-yttria electrolytes can be 

used, b-cause their lower limit of oxygen partial pressure is 

much lower than that of zirconia-calcia electrolytes. 

The work of Hawkes and Mortis8" can be taken as a 

proof for the fact that calcium carbide is an exclusive con- 

ductor of C|* ion in the temperature range of 800-1000oC. 

There should be no side reactions? such as those between 

electrodes and electrolytes, electrodes and contact leads, 

electrolytes and electrodes and coll atmosplnrtu, ami any 
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• •        fiiqni f icuiL LOMU: t-xrAuinqe  reactions in llm alootrolytoHi 

All possible reactions between ZrOy, CaO, fhOg,   and 

Y2O3 amd C, CO, and CO2» forming carbides or metals, have 

positive Gibb's free energy change even at 1000oC.  There is 

no known way in which carbon electrodes can react with CaCAa 

and CaCj.  Platinum and platinum-10% rhodium wires are inert to 

argon gas, solid carbon, and carbon oxides up to 1000oC.  Argon 

gas is inert to calcium carbide, calcium chloride, and solid 

electrolytes.  There is no known possibility of any exchange 

reaction with c|- ion in the fused salt. 

The elements or compounds fixing activity of non- 

metals at the electrodes should be stoichiometric. NiO, CoO, 

Nb02, NbaOj (to be used in calibration runs), CO, and CO2 

involved in fixing activity of oxygen are all stoichiometric 

compounds. Therefore, all the thermodynamic criteria are 

fulfilled for precise measurements. 

2.  Kinetic considerations 

After satisfying the thermodynamic criteria, the 

reversible emf should be obtainable in a reasonable time.  The 

kinetics of Ni-NiOsl, Co-CoO1*8, Nb02-Nb205S3, and 02-CO-C0257 

equilibria are reasonably fast, and the reversible emf can be 

obtained in about 9 hours even at 600oC.  The sensitivity of 

the cells involving solid electrolytes, which depends on the 

mobility of oxygen ions in the electrolyte, is reasonably good 

(±1 mV) even at 6000C.  Hawkins and Morris"^ report that the 

mobility of C^" ions in the fused salt (5% CaC2 in CaCÄ2) is 

:: 

mnhiiifcu nf   ffl- 
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high and the reversible emf could be obtained In about 8 hours. 

The kinetics of gassiflcatlon of carbon by csrbon di- 

oxide has not completely been established.  Kaftanov et al." 

report that the rate of gassJfication depends mainly on the 

chemical reaction at the gas-soild interface and only to a 

negligible extent on the diffusion in the gaseous phase. Their 

results do not agree with kae earlier Investigations. Turkdogan 

and Vinters5* have recently measured the kinetics of oxidation 

of graphite and charcoal in carbon dioxide. They found that 

the rate Is proportional to the square root of the pressure of 

the carbon dioxide and the rate is controlled primarily by the 

formation of carbon monoxide from chemisorbed oxygen and carbon 

on the pore surface.  Rhead and Wheeler'*1 equilibrated charcoal 

powder and CO2 gas in connection with their theraodynamic atudy 

of the producer gas reaction.  In their experiments, equilibrium 

was reached rapidly at higher temperatures, but at 800#C it was 

only attained after heating for 72 to 96 hours.  At 700*C the 

reaction C(s) ♦ CO2(g) • 2C0(g) is extremely slow, and the 

equilibrium was attained only after five days. 

Due to the extremely low gas permeability of glassy 

carbon, the producer gas reaction equlllbr.um with glassy carbon 

cylinders and pure carbon dioxide is expected to be very slow 

even at moderately high temperatures. The composition of CO-CO» 

gas mixtures of different temperatures in equilibrium with 

graphite and glassy carbon can be roughly calculated from th«- 

available thermodynamic data.  Zt is proposed to equilibrate 
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9r«pMt« and gUiay carbon ■•■pU« with calculated CO-CO| gas 

•iKturot rath«r than with pur« C0| or CO gas. Tho oquiiibriu* 

with tuch 9«t aiKturaa It oitpoctod to bo reasonably fast. 
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111.      MOPOSIO  MMIAUCH 

A.     fUn off Work 

I.    yaUbftiow »mit 

C»tU  ilia «iid I lib involvftii^ intmt+nc* •l«ctrod«s in 

tho |Mrtln«ni  immpmrttw «Ad ottfqmn p«rtt«l ptmuf rtn?» 

will b« lnv»sti9«t«d to dtwowtfio ihm rollability of it.» 

•xporUMntal «ppor^ta«. 

Pt/niC},*iOf)/U9.9% 0N«|| 0,..»/Cofil.CoOl«l/^t (IIUI 

M M1 

Tonporatur« raimoi    ftOO-1000aC 

osy^on itfit. prosour« rM^ot    io''' uoo t»-lo" 

II000*CI «Uto 

Coll oiao»|>horot    Furiffiod or«on 

Pl/MH«l.ll«OI«)/Th,...  Ii9|| 0..,,,/ltiO, c«ifÄ,o»c«)/ri   llllbl 

'of M1 

rr«tur« r&r^ci     600-1000*C 

oxygon portlal protouro ron^oi    IO*99fiOO*C)-lO*>9 

U000*C) OtM. 

Coll «tooophoroi    Pufflfiod or^oo 

RoUtlnq tho Oibb'a ffroo onor^y chonoo off vlrtuol   .*oll 

ro«ctloo olth lim ««ff off tno o«ll« III« on«   I«M • 

Kftin - ^CACJ - AC;,» - J| «»(p0j/p0n) ^> 
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H'"1' - ^(48«, - ASJ) (7) 

Th« mnpmcfd  «if of cells Ilia and Illb, calculated from the 

■ott Accurate eveileble values of AOj|i0
%>' AGcoo^' AGNbO ' 

and AC^ 0 *•••• ere shown in Table III. 

2*  00-Oi-COi EguiUbriuiB 

rt/iii(s),iiiO(s)/tr«.9i Ca«.i« 0i.a»/co;9)tco»(q)/i*t   liv) 

Teiipereture range i (00-1000VC 

Oxyged pertiel pressure ränget  lO^'Meoo'c) - lO"" 

(1000-C) etas. 

Cell etaospherei Solid electrode sidei Purified argon 

Osseous electrode eidet CO-COi gss 

sdsture of controlled oityqen 

Potentiale 

lfm  Cell IV would  be inveetigeted to s»eeure the standard free 

energy change of th»  reaction \,    The CO-CO| gee «isture of 

controlled oeygen potentials would be prepered by ueing the 

eonstent preeeure heed capillary floe neters. Th» •■( of cell 

iv «* • function of te«pereture would give the standard ent* alpy 

and entropy cheogee of reaction I. 

AO»! • AOJ - llCIVir - PT UMPoo/Pco»" «•> 

AM« »AM; - sctiiiv)) r (t) 
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TABLE III.  Expected Emf of Calibration Rims 

on    0i' 2 -i.-., atma mV      mV C       «tma        atms atms 

600 w-lf.l 10-20.e io-29-- 72 444 

650 10-17.6 io-19-2 io-27-3 76 446 

700 W-u.i 10-I7.9 io-25-5 80 448 

750 irii.i io-14-6 10-2J.9 84 450 

800 10-.S.9 10-15.5 io-22-1* 88(±3) 452(±4) 

850 IO-12-' 10-m.5 in-2l.O 92 454 

900 IO-11-' io-11-8 io-19-8 96 456 

950 IT11*1 io-12-7 io-1'-8 100 458 

1000 m-tt«! W-ll.l io-17-8 104 460 

The .ucce.. of calibration runs (reasonable match between the 

the expected and actual emf) would demonstrate that the solid 

•lectrolytes are indeed exclusive ionic conductors over the 

rang, of temperature and p02 prevailing in the experiments. 
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If equation 8  is differentiated, 

l(M|t) - M*^) - M»<W))f - »(«»««(»„./»w'   (U> 

Ta.i„g .(»l» vaiue of .M oaioriea fron tKe «crK of Charette 

end rl.«*.." with one niiiivolt unoertainty in the measured 

CBn  voit^e, l- uncertainty in the furnace tenperaturc, and 

/n  i11 ratio of 10, corresponds to '100 
for a fixed (PCQ/PCO'   "" ., 
eexorie, uncertainty in *'„.    I« the ahaence of any specxa 

ptoblem, careful experimentation can achieve mäasurementS of 

this accuracy. 
i.,-a of AG0  (±50 calories) can 

Even more accurate values of 41|i \  * 

be obtained from the emf of the cell V. 

Ü Pt/02(latm)/Zrc.85Cao.l5Ol.a5/CO(g),C02(g)/Pt       W 

U Temperature range:  600-1000«>C 

I! Oxygen partial pressure range:  X0-(SOO^C) - 10" 

(1000oC) atms. 

,   ,11 (12) 
AGJj - -2E(V)F - RT An(pc02/Pco} 

3  r--cQ-C02 Equilibrium 

It Would become clear later that the accuracy of carbon 

activities in glassy carbon would strongly depend on the accuracy 

D       of AGo of reaction 2. The cell VX would be investigated to 

n       accurately measure if of reaction 2. 

/c(or ), CO(g),C02(g)/Pt  IVIl Pt/co(g),coa(g)/Tho..5 v.... ©».•u/Ctft.Ji  ^ 
p I1 

P  1 ^02 
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Temperature range:  600-1000oC 

Oxygen partial pressure range:  lO"21* (600oC) - 10"18 

(1000oC) atms. 

Cell atmosphere:  Gasoous electrode; CO-CO2 gas mixture 

of controlled oxygen partial 

pressure 

Graphite electrode; CO-CO2 gas mixture 

ir equilibrium with graphite 

The use of CO-COy ya» mixtnro instead of Ni-NiO or C0-C0O as a 

reference electrode has two distinct advantages: 

(a) Lince the reaction CO(g) + «jOjlg) - CO2 (g) is 

common on both si^es of the electrode, the un- 

certainty in its free energy values would not 

further increase the uncertainty in free energy 

values of the reaction C(s) + CO2 (g) ■ 2CO(g). 

(b) By increasing the pco /pco ratio of CO-CO2 electrode, 

its oxygen partial pressure can be increased by a 

few orders of magnitude. 

The oxygen partial pressures on two electrode sides and the emf 

of cell VI can be related as 

2AGVRT 
p I = A2 ..   I (13) 
^02 

2AG?/RT 
P II = B

2 e  I (14) 
02 

4E(VI)F/RT 
p I » p II e (15) 
^02   ^02 
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„here Ml is the standard free e„ergy change of reaction 1 and 

* - WW:' B - *o,W"     "A" ^ " m,'intaink
e

i
ä 

conetant2arat a tot.! pre.sure of ! atmosphere, and taKin, 

»VK««  "R" can be expressed 
graphite as a standard state for carbon,  B 

in terms of AGjj of reaction 2. 

.mum    { -mym    -wy™)* 
^ + 2 

B -   

e t + e 

I        Ml 
^äG'J/RTV

1
« 

(16) 

T» 4-« ifi one gets an expression for AG^ Combining equation 13 to 16, one gets 

as 

AG0II 
RT An  -,2fe(VljF/'KT 

VI + Ae   x 

- 2E(VI)F (17) 

It l. worthwhile to note that the enf of cell VI would not be a 

.tr.i,ht line when plotted against temperature (a. in most of 

the electrochemical cells,, because equation 18 is non-linear. 

E(VI) — in 2F 
2A 

-1 + / l+4e 
AOJJ/RT" 

(18) 

This behavior of l(«) vs. T curve become, clear when E(VI) 

is expressed in terms of vc?.    Combinin, equation 16 and 18, 

E(VI) 
AH0II 

^*( 
AS», + R ^(-p) 

(19) 
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where AG" , AHJj, and ASJj are the standard free energy, heat, 

and entropy change of reaction 2, respectively. 

Since P II is itself a non-linear function of T, this 

makes E(VI) a non-linear function of T.  The nature of the 

curves of p II and E(VI) against T has been discussnd in 

Appendix III.  The directly measured AGjj values would bo in- 

dependent of ash content, ash composition, and even the kind 

of graphite used.  Emf of cell VI would be measured as a function 

of temperature which would then give AGJj from equation 17. 

AH0  and AS»  of reaction 2 can be readily obtained from the 

AG0  vs. T curve.  The accuracy of AGJj would depend upon the 

standard deviation of the AGJj vs. T curve. 

4.  Activity of Carbon in Glassy Carbon 

Carbon activities in glassy carbon samples would be 

measured with reference to graphite as a standard state, using 

the following cell configurations: 

(a)  Pt/Cü(g),C02(g)/Tho.«s Yo.is 01.92»/ 

C (glassy carbon),CO(g)»COa (g)/Pt (VII] 

Temperature range:  600-1000oC 

Oxygen partial pressure range:  10"2',(at 600oC) 

- 10"18(at 1000oC) atms. 

The emf of the above cell can be shown to be 

BCVID-S*«—f—2A CTOwrp (20) 

-1 + HIJL 
ac 
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L      where a i« carbon activity in glatty carbon and other eymbols 

have their predefined meaning«. 

In thia case al«o E(VII) v«. T curve would not be 

linear for the reasons discussed previously.  However, carbon 

activity can be calculated explicitly as a function of tempera- 

ture by using the following relation Ü 
(ÄG*     +  2E(VI1)F)RT 

e       " ^ (21) 

D 
If equation 21 is differentiated,  one gets 

«(ac)  - ^((™AG")'AG" 6T)*2P(T6E(VII) 

-(AC*   MEmDP)   ) 
-E(VII)6T) (1+A ace  ^-^ )] (22, 

It is evident from equation 22 that the uncertainty in 

. 

D 
0 

carbon activity would depend on the uncertainties in the emf, 

temperature, AGjj, as well as on the values of these variables. 

(b) Pt/Cj(glassy carbon)CO(g)»CO»(g)/Th«.•» Vt.i» Oi.»a»/ 

CJJ (graphite,CO(g),CO,(g)/Pt IVIII1 

Temperature range«  600-1000*C 

Oxygen partial pressure range:  lO'2" (at 600*0 

- lO"" (at 1000,C) atms. 

0 
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It can be readily shown that the electrode with lower carbon activi- 

ty is at higher oxygen potential. The emf of call VIII is related 

to  co*  and  co*   which are ultimately related to carbon 
IPco > ^pco I 

activities in two different forms and ^G° . 

f^coi)1 - ffcHil11 e2E(VIII)F/RT (23, 
iP^o J    iPco i 

Ref( rring to graphite as a standard state for carbon, carbon 

activity in glassy carbon can be written as 

2E(VIII)F-AGJI 

ac . ■ to" •■—,n^{"ßr)"1 

-»-I 

2E(VIII)F/RT e } 
where 

(24) 

(25) 

Once the emf of cell VIII is measured as a function of tempera- 

ture, freu energy, entropy, and enthalpy change of the glassy 

carbon-graphite transition can be readily calculated, 

(c)  Fused salt electrolyte 

Pt/Cj(glassy carbon)/CaC2,CaC£2(£)/CII(graphite)/Pt    [IX] 

Temperature range:  800-1000oC 

Atmospheret Purified argon 

The carbon activity in glassy carbon is related to the emf of 
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cell IX as: 

M> . RT tn a^ - -E(IX)F (26> 

5.  rn^npv of Gla..v carbon at Absolute Zero 

The configuration entropy of a eolld eub.tance at O'K 

U a direct mea.ure of ite disorder.  Since the third lew 

ae^ande that a perfect crystalline substance have sero entropy 

at 0«K where no vibrational contributions are present, the 

failure of a substance to reach zero entropy at •! gives a 

„easure of the lacK of crystalline order.  In studies of .»any 

^perfectly crystalline materials such a. polyners eccurate 

0      calorimetric method, have been used to deduce the degree of 

|       crystallinity. Neoessarily, these methods can only directly 

U      yield values for configurational enthalpy difference..  Since 

11      the propoeed method can give a direct measure of the standard 

Oibb.s free energy change, value, for both the configurational 

ll      entropy and enthalpy are obtainable. 

The entropy change of the glassy carbon-graphite 

transition, proposed to be deduced from the results of cell 

[       VII or VIII or IX, can be written as 

DAS} - (SJl0(gtaphlte * H^graphite' 

co )    (27a' 
- <sT,c,gla.sy carbon + sT,v,glassy carbon 

11       The .ub.cript. c and v refer to configurational and vibrational 

D      contributions, re.pectively.  Similarly, AHJ can be separated 
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into configurational and vibratlonal contributions. 

AHJ - (»T,C,graphite * HT#v#graphite
) 

— (Hi. +   11° ) T,c,glassy carbon   T,v,glassy carbon 

If high temperature heat capacity values tor glassy carbon 

become available in the future, S^v glas8y carbon values can 

be calculated.  The heat capacity of graphite is available 

(27b) 

over a wide range of temperature 15,28-10 Assuming graphite 

to be a perfect crystalline solid and utilizing above mentioned 

information, it would be possible to calculate configurational 

entropy of glassy carbon at absolute zero.  Similarly, 

(Hi i-j.  - Hi   ,       .  ) values can be calculated vnT,c,graphite  ^r,c,gla«;ay carbon' 
using available heat capacity and heat of combustion data for 

graphite and glassy carbon.  This provides a unique method of 

separating the total entropy and enthalpy into its configurational 

and vibrational contributions. Once the configurational entropy 

and enthalpy is krown, different types of structural models of 

glassy carbon available in the literature can be tested for 

their validity and consistency. 

B.  Electrode, Electrolyte, and Atmosphere Preparation 

1.  Electrode preparation 

Electrode pellets W  dia. ^ «j" ht.) of Ni-NiO, Co-CoO, 

and Nb07-Nb20s will consist of roughly equal amounts of metals 

and oxides. 

Graphite would be machined to serve as the outer 

.. 

• i 
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D electrode and the flat bottom .olid electrolyte tube would slip 

„ into tne cavity In the graphite electrode. This geometry would 

U give a rigid support to the solid electrolyte tube as well as 

11 „ould provide more contact area between the electrode and the 

electrolyte. 

U it is almost impossible to machine baked glassy carbon 

therefore, unbaked glassy carbon would be machined in the form 

of small cylinders, and then baked pieces would slip inside the 

.olid electrolyte tube and serve as the inner electrode. During 

the bsking operation, the glassy carbon shrinks appreciably 

(20-22%), therefore, proper shrinkage allowanoes would be con- 

Üsldered. 
The electrodes of graphite and glassy carbon for fused 

„It experiments will be crucibles and long cylinders, respec- 

tively. 

2. eiaetrolvf preparation 

The solid electrolyte tubes would be purchased from 

Jlrconium Corporation of America. 

Fisher Scientific Company supplies technical grade cal- 

cium carbide.   Hawke. and «orris- have described a laboratory 

(1       prooedure to prepare pure calcium carbide powder. Pure calcium 

„       and finely divided graphite (outg.ssed at 1000-C) mixture 

U       containing a small stoiohiometrio exoess of calcium are heated 

fl       in a mild steel crucible at 900-C for about 48 hours in a 

stream of pure argon. 

I 
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3.    AtmosphTe prePT»tion 

(a) Purified Argon 

The hich grade argon would be purified of oxygen, mo.Hturc, 

carbon dioxide, and carbon monoxide and hydrogen by passing the 

gas through reduced BTS catalyst at 200#C, PtO%  and magnesium 

perchlorate, ascarite, and oxidised BT8 catalyst at 250#C, 

respectively. 

(b) CO/COa Gas Mixture of Controlled Oxygen Potentials 

Purified carbon monoxide (by passing if- through de- 

hydrating compounds, ascarite, and BT3 catalyst in the reduced 

form) and carbon dioxide (by passing it through dehydrating 

compounds and BTS catalyst in both oxidised and reduced forms) 

gases would be mixed for a controlled oxygen potential by using 

the constant pressure head capillary flow meters which were 

first developed by Johnston and Walker*T and later modified by 

Darken and Gurry** and Schwerdtfeger and Turkdogan**. The basic 

principle is to maintain a constant pressure drop through each 

of two flowmeters by bleeder tubes. The pressure drop across the 

capillary is measured by the monometer M. The gases from both 

flow meters are mixed in column G packed with glass beads. The 

liquid heads in the bleeder tubes are adjusted to the required 

levels by transferring dibutyl phthalate from the reservoir R. 

The capillaries Ci and Ca are held in position by ground glass 

joints for easy exchange from one calibrated capillary to another. 

The capillary tubes would be calibrated by measuring 

the flow rate of the rise of a soap bubble in a graduated glass 
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tub« of unifora crost-Motion, «.9., • to^p bubbl« flow Mt«r. 

Johnston nnd ltalk«rIT roport th«t th« p«rtUl proaaur« 

ratio of gnson •■ low «. ic'» (or «• high as 10*) could bo 

MintaiiMd constant for days. Th« «as alKin« systsa to b« ussd 

In th« proposed rosssrch Is schoMtioslly shown in Pigur« J. 

C. Esporiasntal Apparatus and Frocsdur« 

1.  Espart—ntal Apoaratu« 

(a)  Solid Oxid« llsctrolyt«« 

Th« »locirod« iaolation r«qulr«a«nt la baat IfulfilUd 

by th« conplot« «ncloaur« of on« «l«otrod« in an U^arvioua 

alactrolyt« tub«. Th«r«fora. th« «Uctrolyt« of th« tubular 

for>f 1/2- oof !/•■ xo, 24" long, would b« u««d. A platlnui 

laad will t« paaaod through a quartt capillary tub« whioh is 

pr«at«d on th« «i«etrod« by a aprin« to provide good contact 

with th« «Uctrolyt«. Th« oth«r platlnua laad wira will b« 

puahad againat th« outaida flat and of th« tub«. A ft/rt 

-101 Rh th«r«ocoupi« would b« us«d fot th« ta^aratur« aaaaur«- 

mmnt,    Th« whol« aaaaably would b« «ncloaad in a aullit« tub«. 

Th« c«lla wouid ba alowly h««t«d in a vartieal roaiatanc« 

furnaca capabla of raachlng 1000»C.  An alactrically groundad 

Mtalllc tub« (nichroaM) aurrounding th« null it« tub« would 

»lnl«lt« induc«d voltagaa fro« th« raaiatanc« furnac« aa wall 

aa broadan tha conatant taa^paratura ton« and incraaaa ita haat 

capacity (to raduc« t«^«ratura fluctuationa). Tha propoaad 

call «■••Ably |f shown in Pigura 4. 
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Pf-iO% Rh wlrt 

Pf wlrt 

Pf wlrt 

» i ja    4* 

I 

C«ii Amcmmbif tot Solid 
lUctrolyt« Byttcfk« 
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IS. 
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17. 
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HulUi» tub« 
Solid •l»cirolyi« tub« 
Cr«pillto «l«ctrod« 
Solid «l«ctffolyt« 
p«ll«t iMld« th« «üb« 
S.S.    p«ll«t   OMttld« 

OlAOty eorboo olwctrod« 
Yhomocoupl* b«»*d 
AltMiin« ^««th 
Oi«««-c«r«alc Joint 
O-rin^ 
Alumnuo «■ouplifi^ 
O«« &nl«t 
Oo« owtl«t 
MM «««1 
fprift* ^'«oS 
AprifM} 
ai«««-c«rafiic joint 
Vycor  «!«•• 
^latlnua rln9 



n. ^.m». ». .ho., la MM »•   •• ->» -ou,rt 

„«„„I o. . «..Pf" -r-elb«. po.Ulo.-d .n.ld. . MtUM 

.ub..    Tb. ,U..y .«boo ..oetro*. MM r..t o« . ..rconi. 

dl.b oo«r.«, «- ."pMt. .r«c.bU.    «. I«- - - »• 

,lMn ..rboo .l-i«-. -W M I— '-- "" ",*"-UO- 

lyt. ,« c«:. u IM ***** " m '"*"' CrU-,bl- 
tb. t-^r.i«. «H.«» - "-"«"•* ,,,-,,C) * ' ,*MlC,, 

„ropocttoMt. wotroll.r- 
,«. t c« b. —.«^ h» . ..»«-».»••«• PO"."«-'"' 

„ «, „o. u- pot«.ti-t.c. mmm, u - «— - - 
.^t. l«o P»«*»-« •"-' 

Ol   u- —.-'«» -f '• »■ •rro, * " ^ 
p.«»«, «PO» th. r..l.t«e. of th. circuit .nd 

tb. o.t-o«-'>.>">c. curront, .nd 
,„    „,. p...^. of c«.r.nt t..rou,h tb. ell «u... 

tb. «.««I pot.«tl.l to dovl.t. fro- tb.t of 

^ t,«. «,ulllbrlu- <pol.rl..tlo« .ff.ct). 

Tb. ..cood -tbod d.p..d. on tb. «.. of .l.ctro«.t.r 

»auiM to «•. m -f -"«"»• T'"'' h'm hu,e lnlerMl 

7^-  ,o. tb. ordor of . .- M—« -i— - '~lonU- 

ZZTwH ob« 1. t » b ,-, typ- '»'    Nrt-—' 
tb. .P-d of r..pon... «.nv.ni.nc. continuity of re.dln„ 

0, tb. li .v«- - •— •<,v",t•,," ,'h,•,, '" """^ 
of ^out ..it u .-mount,   mm. for fu.ea ..u .. «on « 
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Figure 5.  Cell Assembly for Fused Salt Systems 

(1) Fused salt electrolyte (5% CaC? in C«Cij) 
(2) Graphite crucible 
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£or solid elect.cayte studies, the electrcneter systen, would 

be used. 

2.  Procedure 

Each cell would be assembled at room temperature.  It 

„!„ then be evacuated several times and flushed with purified 

argon or CO/CO. mixture. The cell would be heated slowly to 

^00-C and left overnight for homo.enisation and equilibration. 

« wouid be reoordod at intervals of 30 minutes and if the 

values would be considered to be steady.  The rate of gas flow 

past the cell would be varied to checK its influenoe on the 

cell voltage. The temperature would then be lowered by S0"C 

and measurements would be made until a steady emf is obtained. 

„ experiments involvin, solid electrolytes, the cells would 

be evacuated at each temperature and then would be flushed with 

co-co. „as mixture, in equilibrium with graphite or glassy 

carbon (calculated from available data, at that temperature 

This would avoid any deposition of carbon during cooling.  This 

procedure would be repeated until the emf at .owest temperature 

is measured.  The reversibility of cell voitage would be checKed 

at each temperature by polarizing the ceil i. both directions. 

Some of the samples would be repeated and the temperature cycling 

„ouid be done to chec. the reproducibility of the data. 
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APPENDIX I 

0        , ff  ./" ^ 0£ ^^ ^"^   P^"="io„3, Riohard80n and 
«es  compilea ana grsphically represented ^ ^^ 

Glbb s free energy of formation of all nvl„. ■-ion ot ail oxldes pertinent to the 
Oiron and steel malcing. Howevar i-h.,. 
  . However, they assigned only an order of 
magnitude value to the aoouram, „f . 
the»  . , ener9y data "y ^"sifying 

-e standard free energy values of carhon o.ides „ere ta.en fro. 
t e ompllation of ^^^ ^ ^ ^ ^ ^ 

of his calculated values. Then Kuhaschews.i and „«... and 

ward  again conpiied free energy data fro. the same source end 

D      quoted the sa^ order of magnitude value of the accuracy. There- 

ore, all the later compilations derived from Thompson-s" 

0      oalculations give only the order of magnitude of error and their 

accuracy is anything less than 1 Kilocalorie, hut the exact 

number has never been stated. 

Stun  "T Therm00h9»i"1 ""- "'" P-U-hed in 1965, 

n        h  „: al-  "t1" ^ "— **  - — oxides. 
f,29a. 15 «I» «or CO, (Reaction 3) was tsken from 

Prosen, et U.V paper and was corrected for the change in the 

II       molecular weight of CO, from «.,„ to .4.011.  This correction 

would change Prosen et al «o' .,.i 
sen et al. s value by a factor of 1.0000227 

The AH0 , •••?« 
f,298.15 value for CO (Reaction 4) was computed by using 

AH°f,298.15 «lues of reactions 1 and 3 taKen from the works of 
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Rossini' and Prosen, et al.7, respectively.  Table 12 lists 

the AH0   QO ic values from the original sources,'^ aocordinq 
£i298 »15 

to the present calculations, and from original and recent 

JANAF Thermochemical Tables. '','15  The values of AH0f>298 ^ 

(according to the present calculations) match reasonably well 

with those listed in the original JANAF Thermochemical Tables,''' 

but the accuracy limits attached to the values are in complete 

disagreement.  The tabulation of Schwerdtfeger and Turkdogan8» 

is based on the original JANAF Thermochemical Tables1" and 

therefore they list highly exaggerated values of the uncertainty 

limits.  However, the accuracy limits reported in recently 

published (June, 1971) edition of JANAF Thermochemical Tables11 

have been corrected and they match extremely well with those 

obtained in the present calculations. 

Rossini22 made an elaborate compilation of chemical 

thermodynamic properties which for carbon oxides are essentially 

the same as made by Rossini et al.23 under American Petroleum 

Institute Research Project No. 44.  Later on Coughlin2", Elliott 

and Gleiser25, Wicks and Block2' reported the sard values. 

They used AH0f>298>15 vaxues for reaction 1 and 3 with an 

accuracy of 'lO cal/mole (which, according to the present 

calculations, should be '39.5, and HO.8 cal/mole, respectively) 

and calculated the values of AG0f>T of reactions 3 and 4 at 

various temperatures.  The listed accuracy of ^G0ff298#15 values 

of reactions 3 and 4 are 30 and 20 cal/mole, respectively. 

Using equation 5, and the most accurate values of AS0f>298#15 

. 
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of reactions 1 and 3 (-20.650 I 0.045 and 0.693 I 0.045 cal/moU- 

»K, respectively) the calculated accuracy of AG-f>298#15 value» 

of reactions 3 and 4 are '55.8 and 1129.5 cal/mole, rospectivcly. 

The accuracy of AS«f#T used in the present calculations Incorporate» 

errors in the experimental heat capacity values as well as their 

numerical integration.  Error in (AH-f/r - AH*f#298#15) value, 

are taken to be T times error in AS#f/r value». 

*K.T) - •("•«."•.«Hi! AcpaT).T4(As.f(T| m 

Table 12 shows AG"f>T values of reactions 1-4 at 298.15 and 

1000oK as obtained in the present calculations, listed by 

Coughlin2\ and original and recent JANAF Thormochemical Table».»•»^ 

The thermochemical calculation» and the extended dl»- 

cussion of their probable accuracy depend heavily on accuracy 

of the heat of combustion of graphite (reaction 3) a» reported 

by Prosen et al.7 in 1944.  When an accuracy of «10.8 cal/mole 

has been reported, one has to critically consider the effect» 

of impurity content, impurity composition, pretrcatment, and 

the kind of graphite.  Experimentally it is almost impossible 

to determine the weight of ash present in the sample after 

combustion, and in calculating the results It Is necessary to 

assume that any residue present in the crucible after combustion 

has the same composition as in the original graphite.  This 

method of correcting for the weight of ash is not nocossarlly 

sound because the assumption is made that the Impurities are 

J 
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ori9inaUy ptm—nt  in th« graphlt« In th« mam torn •• th«y «r« 

found in  th« ash. nMly, «• OK4do.# It It «or« correct to 

«■•UM that th» iÄpurltU« «r« pi«t»ni M c«rbid«t which oxidli« 

during th» co^ustion proc»st. Thui. not only will th» wwlqht 

of ash dlffor fro« th» original l«purlty contont, but In addition. 

« »ignlfleant quantity of h»at will also b» »volvod by th» 

oxidation of carbldaa. Th» »ff»ct of th» lapurlty contont on th» 

h»at llbaratad p»r gras of qraphlt» burn»d can b» d»«on»trat»J 

by con«ld»rln9 th» b»havlor of a qraphlt» which ha« an aah con- 

t«tit of 300 ppmt  th«t It I «ra» of qraphlt« produc«« 0.1 •« of 

a«h. During th« th«nMl pr«tr««tMnt «ilicon «nd calciu» pr«- 

•»nt in th» 9r«phit« «r« conv«rt«d Into o«rbld«t which In turn, 

during th« co«tou«tlon, undergo «xothormle r»«ctlon«t 

(i)  IlC ♦ 20i • flO, ♦ COtC-AH»f - 2M.I Kc«l/«ol« 

or 9S7I cal/g Si)i 

(ii) CaCi ♦ 5/20i - CaO ♦ 2CO, l-ÄM#f • 325.0 Kcal/aol« 

or 8109 c«l/g Ca). 

Xf th« conc«ntr«tloni of »ilicon «nd c«lclu» l«purltl«» «r« both 

x mq/q  carbon. th«n on ooabustlon by «toichioaatry, 2.14x mq  of 

«ilio« «nd l.40x »g of c«lclu» oxld« will b« produced for «v«ry 

gr«*i of c«rbon. Th« w«lght of «th will b« J.54x mq.  Equ«tlng 

thU with th« «Mui^d figur« of 0.1 «g glv«« x is 0.015. Thu« 

th« «Ilicon «nd C«1CIUIB content of th« orlgln«l gr«phito I« 

0.085 mq/q  «nd cons«qu»ntly th« SIC «nd C«C, contontx «r« 0.121 

«nd 0.1J6 mq/q,  r««p«ctiv«ly. Th« «mount of c«rbon which burn« 

•a gr«phlt« i« d«pl«t«d by th« «mount« comblnod «« carbide« «nd 
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th«t« «r« 0.03* mq/q  a« tiC and 0.051 mq/q  «• Cat,, UaviiMi 

0.090743 q/q  of "fraa* carbon. Tha haat of coabuatlon valua 

104*091.0 oal/aola) raportad by Froaan at al.f can bm  writtan 

aat 

haat of coabuation/9 «ah fraa graphtto 

- obtarvad haat ralaaaa/a laaplo 
1 - aah oontant/q saaipla 

Thua, tha obaarvad haat ralaaaa • 7030.47(1-0.0003) • 7028.12 cal/q. 

Tharafora* 0.121 mq  of OiC and 0.130 mq  of CaC» «#ould liborata 

O.O9 and 0.01 cal. raspactivaly« and tha haat liboratad by tha 

coMbuation of 0.999743 qm of "fraa" carbon In graphite is 

7020.02 oal. Thia ylalda a valua of 7020.03 cal/gni or 94029.7 

cal/aola for tha trua haat of conbusiion of graphite.  It can 

ba aaan that tha apparent haat of com^uation naasured by Proaan 

at al.9 la 22.1 cal/nola (94,091.8 - 94029.7) higher than the 

true value for a graphite aasunad to contain equal Si and Ca 

impurity and totaling 300 ppn of aah. 

If tha graphite aampio was not prepared by heating to 

at leaat 2700*C in an inert atmoaphere, the hoat of combustion 

obtained was significantly higher (40 cala/mole).'  This result 

which was fully corrected for ash characteristics, nhows the 

significant «Ltec on huat of combustion due to difference in 

degree of graphitisation.  However, the value of heat combustion 

reported by Prosen et al.7 is an average of 17 measurements on 

Buckingham natural graphite and various artificial samples, with 

varying degrees of graphitization and ash characterisitcs. 
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APFCNÜIX XI 

zmtimMf  of th« ThTiftodyn—ic ProPTti>» of th« GU»»Y CTbon- 

Cl^iv CTbon-Graphif Eauilibriujn 

Th« following d«t« h«v« b««n used in th« prei«nt 

calculationt 

(1) Th* heat of combustion of glassy carbon at 298. IS0^ 

(2) Th« heat of combustion of graphite at 298.15,K 

(3) The heat capacity of glassy carbon in the tempera- 

ture range of 5-298.IS'K*» 

(4) The heat capacity of graphite in the temperature 

range of 1-298.IS-K1» 

If both glassy carbon and graphite obey the third law, the 

following thermodynamic properties for the reaction C(glassy 

carbon) • C(graphite) can be obtained at 298.150K. 

AH» - -1#223 ± 30 cal/mole 

AS* - -0.046 ±  0.01 cal/mole-0K 

AC - -1,209 i 33 cal/mole 

U(a ) ,       .   - 0.13 i 0.006 vac'glassy carbon 

However, it is anticipated that the configurational entropy of 

glassy carbon at absolute zero would be significantly high and 

hence, activity of carbon in glassy carbon would be close to 

unity. 

Diamond-Graphite Equilitrium 

For purposes of comparison, it is worthwhile to calculate 
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activity of carbon in diamond.  The probable equilibrium line 

between diamond and graphite forms of carbon has been calculated 

thermodynamically from the physical properties and heats of 

formation of the two forms of carbon.60'61 

The following thermodynamic properties for the reaction 

C (diamond) -► C (graphite) can be obtained at 298.150K: 

AH0 - -453 cal/mole 

AS0 -  0.802 cal/mole-0K 

AG0 ■ -692 cal/mole 

'Vdiamond " 0-31 [] 

Ü 

0 
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APPENDIX III 

. 

D 

ii 
Naturo of pco and E(VI) vs. Temperature Curves 

Applying L«Hospitals rule, the limiting value of few 

functions which constitute the required equations 18 and 19 

are: 
AGJj/RT 

Lt e 

-AG'/RT 
Lt e   II    - 0 

AG° /RT    -AS'/RT 
Lt e  1-L   «e   " 

T -♦• oo 

-AG» /RT    AS'/RT 
Lt e  "   - e  II 

T ■>• oo 

Lt p^1 - 0 •co 
T ■* 0 

Lt p " - 1 
•co 

T  "*  00 

" h (pel1) - 
T -•• 0 

T  >  00 

Lt E(VI) - -AHJJ/2F 

T -•• 0 
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Lt  E(VI)   -   [-^Hjj   +  TUSJJ   +  R   An  A) 1/2F 
<p    ■>   oo 

Lt  ^   (E{VI))   -  ■ 

T  -►   0 

Lt JL (E(VI)) - (ASJJ + R in A)/2F 

T 00 

Figure 6 shows schematically the curves for both pco and E(VI) 

vs. temperature. 

D 
II vs. T Curve rco 

D II starts with a value of zero and has an infinite 
fco 

slope at T - 0, and then asymtotically merges to pco - 1 line. 

E(VI) vs. T Curve 

The behavior of p II vs. T curve is fully reflected on 
• CO 

this curve.  This curve also starts with an infinite slope, has 

a value of -LH0
11/2F  at T-0, and as p^1 starts tending to unity, 

it is evident from equation 19 that this asymtotically merges 

to a straight line with a slope of (ASJj + R Hn A)/2F.  Even 

when p II is close to unity but not unity, E(VI) almost merges 

to the straight line because in this region Än[A/pco J is very 

close to in  A.  It is worthwhile to note that the behavior of 

E(VI) vs. T curve resembles in many respects that of activity 

vs. mole fraction curve in a typical non-ideal metallic binary 

solution. 
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PLOW VIA DISLOCATIONS IN IDEAL GLASSES 

J. J. Gilman 

I.  Introduction 
i 

A few years ago the author (Gilman, 1968)  proposed 

that flow in noncrystalline solids often consists of correlated 

molecular shear events that can be described in terms of the 

motions of dislocation lines.  In the meantime, experimental 

results have appeared that support this proposal so it is 

worthwhile to examine it and some of its consequences further. 

Previously it had been supposed that flow in glasses consisted 

of uncorrelated individual molecular shears as in a liquid of 
2 

low viscosity (Eyring, et al., 1964) .  Since the correlations 

between shears and, hence, the discrete dislocation lines will 

only persist for finite times, this mode of flow will only be 

important if the time duration of the plastic flow is short 

compared with the viscous relaxation time.  Supposing that a 

flow event lasts 10 seconds and the applied stress is 

moderately high (say 1010 d/cm2) then a transition in the 

deformation mode will occur at a viscosity level of about 

10x10l0 ^ 1011 poise.  Flow in glasses more rigid than this 

will tend to be associated with dislocation lines.  In glasses 

less rigid than this, the flow events will tend to be 

uncorrelated. 
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II.  Nature of Dig location Lines in Glasses 

Figure 1 compares two dislocation lines, one in 

crystalline silica (quartz) and one in vitreous silica. 

In the crystalline case there is a constant Burgers vector 

along the line and the structure left behind as the dislo- 

cation moves is perfectly restored crystal (if the Burgers 

vector is a perfect translation vector of the crystal 

structure).  In the noncrystalline case the local trans- 

lations that are needed to restore the bonding vary along 

the line length so the Burgers vector fluctuates in magni- 

tude and direction. 

The drawings are projections onto the plane of the 

paper of the positions of the silicon atoms of a single 

sheet in the structure.  The oxygen atoms are not shown, 

but each silicon atom is bonded to an oxygen atom that lies 

just above it plus three that lie below it, approximately 

parallel to the plane of the drawing.  If parts of the upper 

oxygen layers are translated while the rest are not, dislo- 

cation lines can be formed at positions indicated by the 

dashed lines in Figure 1. The arrows represent the trans- 

lations that move oxygen atoms from initial sites to 

equivalent final sites during an elementary motion of the 

dislocation line.  The sheet is not necessarily flat but it 

will tend to lie parallel to the plane of maximum shear 

0       stress. 
_ 

I 
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In addition to the fixed vs. fluctuating Burgers 

vectors, the two cases are different because the structure 

will not be perfectly restored behind a moving dislocation 

line in the noncrystalline case.  This lack of complete 

restoration occurs because the distribution of Burgers 

vectors changes as the dislocation line moves. Consider a 

network with an average primitive translation vector, <b>, 

which has a dispersion, 3. Then start with a dislocation 

line at one position and having an average Burgers vector, 

<b>i, whose dispersion is ßi. Move this line forward by an 

average amount, <b>, to a new position with average Burgers 

vector <b>2 and dispersion 32.  In general, <b>i ard <b>? 

will not be the same so various defects will be left behind. 

The number of these defects will be proportional to the 

fractional change: <b2><b>
<bl> ' Or, if b is normally 

distributed the number of defects will be proportional to 3. 

The defects left behind can consist of various 

types that will depend on the class of glass, whether it be 

of the silicate, polymeric, or metallic type.  In the 

silicate case, a glass is an open covalently-bonded network; 

and a metallic glass consists of a densely consolidated 

collection of approximately spherical atoms.  In open or 

tangled chain networks, broken bonds (free radicals) can 

be left behind.  In any network, density fluctuations can 
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bo loft behind, as well as dislocation loops.  The deposition 

of these defects in the wake of a moving dislocation will 

produce a "structural drag" force in addition to whatever 

viscous drag force is acting. 

The concept of dislocation lines with variable 

Burgers vectors is reasonable in this case because the 

increase in self-energy that occurs as a result of small 

fluctuations in b is relatively small since the energy is 

1.       proportional to the square of the Burgers displacement. 

Suppose a unit length of dislocation has a Burgers displace- 

ment of b + 6 along one-half of its length, and b - 6 along 

the other half, where 6 is a small increment.  Then the ratio 

of its elastic energy to that of the same length without 

fluctuations is:  1 ♦ 6Vb2. Thus, fluctuations as large 

as 30% cause only a 10% energy increase. 

In the noncrystalline case illustrated by Figure lb, 

[1       the average Burgers displacement has a definite value that 

is determined by the network dimensions, but there are 

Ü       fluctuations in both its magnitude and its direction along 

the line.  In order to minimize the energy of such i dislo- 

cation, it is necessary for the mean, b, to be conserved 

A       over long distances; thus, although the local b may fluctuate, 

there are long range correlations (occasional large energy 

densities may cause this condition to be relaxed).  Further- 

more, there will be little tendency for the line to lie on 

. 

.: 

i 
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a single plane, and its local structure will change as it 

moves.  Nevertheless, it is expected that such dislocations 

will exist in noncrystalline solids, especially under flow 

conditions.  When they are viewed with a somewhat fuzzy 

microscope (resolution of approximately 10A), their behavior 

should resemble that of dislocations in crystals. 

Application of the concept of dislocation lines to 

glassy materials is not just a forced analogy with crystals, 

but is desirable because it allows the flow properties of 

these structures to be discussed in a more organized way 

than is otherwise possible.  That is, it provides a simple 

means for describing the correlations that must exist between 

adjacent elementary shear processes in a rigid glass.  It is 

clear that if an elementary plastic shear occurs at a parti- 

cular point in a glass, then the probability that another 

will occur adjacent to this point is much greater than the 

probability that another shear will occur at some random 

point.  The enhanced probability results from the local stress 

concentration and the favorable local configuration.  This 

correlation of shear events leads directly to flow vi* the 

motions of dislocation lines. 

The dislocation line description of ""low in glasser 

becomes more useful for describing and interpreting the 

kinematics and dynamics of the flow process.  It allows 

phenomena such as glide-line markings, abrupt yielding, non- 

linear viscous response, low-temperature internal friction. 
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stress relaxation, etc. to be given a microscopic interpreta- 

tion. These topics will be discussed further as this paper 

progresses. 

III. Experimental Evidence for the Existence of Dislocation Linos 

Direct evidence for the existence of flow via the 

motion of dislocation lines in glasses has been obtained by 

Leamy, Chen and Wang (1971) . They have observed distinct 

and relatively sharp shear-step markings on the surfaces of 

bent specimens of Pdi^Si glass.  Such surface steps require 

inhomogeneous flow propagation within the material.  Since 

the boundary of a locally sheared region is defined to be a 

dislocation line, this means that dislocations must move 

through these glass specimens. 

The strain-stress curves measured by Masumoto and 

Maddin (1971) , as well as those measured by the above 

authors, show definite evidence of plastic flow (as contrasted 

with viscous flow) followed rather immediately by fracture 

in glassy Pdi»Si. 

Plastic flow in various silicate glasses has been 
5 

observed directly by Marsh (1963)  and indirectly by various 

authors.  Although it may be inferred that such flow is 

inhomogeneous, this author is not aware of direct microscopic 

evidence. 
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For partially glassy pclymors the existence of flow 

by means of dislocation motion may be inferred from the 
6 

general character of the macroscopic response (Dey, 19G7) , 

and for microstructural observations that nhow inhomogeneous 
^ 8 

banded flow (Imada, et al., 1971 ; Brady and Ych, 1971 ). 

Since plastic flow via dislocation motion in glasues 

is both theoretically plausible and strongly supported by 

experimental observations, it is worthwhile to develop the 

kinematics and dynamics further.  This is done in the next 

two sections. 

IV.  Kinematics of Flow Via Dislocation Motion 

e ■ <b> 
P 

. 

.1 

A general expression for flow via dislocation lines 
I 

was derived by Gillis and Gilman (1965) .  The plastic strain 

rate in this case is given by: 

i(vn)dÄ (1) J 

I whore b is the average Burgers displacement in the shear 

direction, v is the velocity of a line segment, m is the [ 

generalized outer normal vector of the segment, and dÄ is 

an infinitesimal line segment. 

Since glasses are Isotropie, the velocity vector 

is not expected to change much from one point to another so 

this equation may be simplified to read: 

{ 

( 
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p 

where v is the average velocity and 1 is the line length 

per unit volume. 

Although the length of a dislocation line will 

meander in a complicated way, it can be represented as the 

net resultant of a collection of small loopd of radius, r, 

and volume concentration, N.  Then L = 2TrNr and when these 

loops expand at velocity, v, the length per unit volume 

will increase: 

L = 2TTNV (3) 

o 

As the concentration of lines increases attrition will occur 

a3 a result of collisions. If the collision parameter is p, 

then the rate of attrition of L is: 

4 - pL2V W 

f        so the overall rate of change is: 

j L » 2TTNV - pL2v • a-0L2 ^ 

I 
1        Let C2 = a/0, then: 

I 

i  = ß(C2 - L2) W 
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Integration of  this v:ith L = Lo  at t = 0 yields 

0ct - tanh-l(L/C)   -  tanh-MWO (7) 

and s ince Lo«C this may be inverted to read: 

L « C tanh (BCt) 
(8) 

Thus, L increases with time to the steady-state value: 

ss 
C ■ (2TTN/P) 

l/2 (9) 

and the initial slope is 6C = M.    This is illustrated in 

Figure 2. 
The behavior of Figure 2 combined with that of 

Equation (2) indicates that the plastic-strain-rate will 

increase with time at constant stress until it reaches a 

steady value that is determined by Lss and the average 

velocity.  Furthermore, since the collision parameter will 

depend on the strength of the interactions between dislo- 

cations relative to the applied stress, it will most likely 

vary inversely with the square of the applied stres..  As a 

result, Lsg will tend tc increase in direct proportion to 

the applied stress; and if the velocity is proportional to 

stress the strain-rate will increase with the square of the 

■ 

stress. 

, 
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Tht! illHcunalon above aaaumos that the concentration 

of loopM is fixeil.  However, since screw dislocations in 

qlasses can cross-glide without difficulty it leems likely 

that the loop concentration will increase via multiple- 

crossglide.  The N will be proportional to L; making L 

initially proportional to L so first order multiplication 

occurs, followed by attrition proportional to -L2.  This 

behavior is well-known in crystals and is discussed in 

detail elsewhere (Oilman, 1969)^ so only the results will 

be given here.  If k is the multiplicaticn constant and k2 

is the attrition constant, the kinetic equation is: 

1 

1 
I 
I 

L - kjL - k2l/ 
(10) 

This integrates to give the dependence of L on time: 

L .   
klL«e (ID 

According to this equation L- increases exponentially at 

first starting from the initial value L0 and eventually 

saturates at the steady-state value kj/k,,. 

This completes this brief discussion of kinematics, 

and attention will be directed next to the velocity factor 

in the strain-rate equation. 
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V.  Dynamics of Dislocation Motion 

The forces acting on a dislocation line segment 

will include the following: 

a) driving force « T<b> where T is the shear 

stress on the glide plane and <b> is the 

average Burgers displacement. The shear 

stress may derive from applied stress, 

internal, or both. 

b) inertial resistance « m (dv/dt), where 

m ■ effective mass and (dv/dt) is the 

acceleration. 

c) line tension 

d) drag force 

1) caused by defects left in wake 

2) drag constant and v is the velocity 

For most cases of interest only forces (a) and (d) 

are important.  The inertial resistance is small because 

the effective mass is approximately pb2 (where p is the 

mass density) and this is a molecular mass per unit length. 

Thus, the time needed to overcome inertial effects is small 

and dislocation motions quickly approach steady-state. 

Unless dislocation lines are sharply curved, line 

tension effects are small.  In the present discussion small 

average curvatures will be assumed so these effects may be 

neglected. 
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Since a dislocation in a glass has no definite 

glide plane the appropriate shear stress is simply the 

maximum applied shear-stress which equals half the applied 

tension or compression in a uniaxial test.  When multiaxial 

stresses are present, the root mean square or octahedral 

shear stress will be the appropriate driving stress. 

At steady-state the driving force is balanced by 

equal but oppositely directed drag forces.  The most 

fundamental of these are the viscous ones.  These take many 
11 

forms (Rosenfield et al., 1968)   but the most important 

ones act at the very core of a dislocation because this is 
i 

where the maximum velocity gradient is. 

In the case of a glass, an estimate of the viscosity 

coefficient at a dislocation core may be obtained by apply- 

ing the free volume theory of viscosity.  In order to do 

this an estimate of the local change in the structural free 

volume is needed.  This can be obtained by usinq some results 

from soil mechanics as follows.  This free volume is not the 

same as thermally induced free volume, but it does have an 

effect on the local viscosity and has its own temperature 

dependence. 

The core of a dislocation is the place where the 

relative displacement across the glide plane changes from 

zero to b.  In elcstic theory the change is discontinuous, 

but in physical theory the change is more gradual and t.-.kes 
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place over a distance, w, that is called width of the dislo- 

cation.  More precisely, the displacement along the qlide 

plane near a dislocation line may be represented by: 

u(x) - Zk  tan"1 (2x/w) (12) 

As x varies from — to +-, w(x) changes from -b/2 to +b/2 

and the shear strain increases from zero far away to b/w at 

the center of the dislocation.  The width parameter, w, nay 1 

be as small as b or as large as many times b. 

In an aggregate of random particles such as a glass, 

the dilatance that results from a given shear strain has 

been measured by students of soil mechanics and also pre- 

dicted theoretically (Home, 1965) 12.  The dilatance is: 

AV 
T ' 1-4 '* ^«x) (i3) 

Therefore, if w = b, the dilatance at the center of a dislo- 

cation in a glass would be approximately 1.4.  This dilatance 

or excess free volume will cause a reduction in the viscosity 

in the immediate vicinity of the dislocation core.  The 

amount of this reduction can be estimated from the free 

volume theory of viscosity (Cohen and Turnbull, 1959).13 

The Ooolittle equation for the viscosity is: 
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. 
where n  and B are constants, V0 is the nolecular volume at 

o 
T - 0 and Vf is the free volume.  Differentiation and rearrange- 

ment of Equation (14) yields an expression for the fractional 

change in viscosity caused by a given fractional change in 

the free volume: 

n   v, 

since B is of order unity, and V0»Vf this mean« that a small 

change in free volume can cause a large change in the local 

viscosity. 

Taking V. « aTV0 where a is the volume thermal 

expansion coefficient, plus Equation (13) with b - w, yields: 

Aft « -1-4B (16) 
n    aT 

or, if n„ is the viscosity at a dislocation's core, then: 

(17) nc 
1.4B _ 1 

aT 

which gives a large reduction in the local viscosity at low 

temperatures and/or for small thermal expansion coefficients 

The above equations indicate one way in which flow 

in glasses tends to become increasingly localized at low 

temperatures.  Dilatanco left in the wake of a moving 
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dislocation increases the ease with which a subsequent dis- 

location can move through the same region.  However, at high 

temperatures the tendency toward localized flow should dis- 

appear, as indeed it Joes.  Equation (17) indicates that there 

is a critical temperature at which n = M when the term in 

parentheses equals unity.  Determination of this critical temper- 

ature, Tc  0.7B/a might give a means for determining the value 

of B. 

Dilatance will affect other physical properties in 

addition to the structural free volume change associated with 

it.  For example, since the elastic stiffness arises from 

electrostatic forces it depends on the four-thirds power of the 

atomic density.  If M is a particular stiffness modulus and n 

is the atomic density (atoms/volume) then a change in atomic 

density causes a stiffness change as follows: 

-664- 
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and a dilatance at a dislocation core of 1.4 would bo expected 

to cause nearly a two-fold decrease in the elastic stiffness. 

Another effect that needs to be kept in mind is that 

dilatance created by shearing a group of atoms is not distri- 

buted uniformly.  It tends to be spread out on the glide plane 

in the glide direction.  This causes ani.'5otropy in a sheared 

soil and can be expected to do the same in a sheared glass. 

: 

3 
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The creation of dilatance during plastic shearing 

I tends to soften the local structure as discussed above. 

Offsetting thiz  effect to various extents is the creation 

I       of defectF during the flow process.  These defects cause 

drag on a moving dislocation and also tend to interfere 

with the motions of subsequent dislocations. 

If the energies of the defects are known the arag 

stress can be readily calculated.  Let 6 be the density of 

defects per unit area left in the wake of a moving dislo- 

1        cation.  Let 0 be the energy per defect; and 0 be the local 

stress.  The work done by the stress during a forward move- 

ment, x, is obx, where b is the Burgers displacement.  If An 

is the incremental stress caused by defect production then 

i        the work done by it must equal the energy needed to create 

the defects which is U6x.  Therefore, the incremental stress 

is: 

Suppose that 0 - le.v./defect; 6 = 1012/cm2; and b = 2A. 

Then Ao ■ 10« d/cm2.  This is not a large stress, so defect 

drag will not have a large effect on the flow stresses of 

glasses unless 6 is very large. 

in the case of polymers it is often argued that the 

breakage of molecular chains {thereby leaving defects behind) 

U6 (19) Ao - -r 
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actually limits the rate of plastic flow.  However, presently 

available data do not support this hypothesis.  For example, 

data presented by DeVries (1971)   rhow that   in Nylon 6 

flowinq at 8.2 x lö** d/cm.*   about 3.3 x 10,b free radicals 

are produced per cm.3 per unit strain (this being ■ lower 

limit).  Now the energy needed to break a carbon-carbon bond 

is about 5.7 x KT'ergs., so t'ic  energy needed to form ehe 

observed spins is about 9 x lO1* ergs/cm.3 per unit strain. 

But the plastic work done per unit strain is about 8 x lO9 

ergs/cm.3.  Thus, the plastic work done is 105 times as large 

as the energy stored in measurable free radicals.  The data 

presented by DeVries Tor polyethylene yield a similar dis- 

crepancy factor.  Although the measurements may not observe 

many of the spins that are created, it ll unlikely that this 

can account for such a large discrepancy. 

VI.  Implications of Dislocation Mechanics 

The plastic behaviors of crystalline solids range 

widely from elastic-ideal plastic at one extreme to ideal 

visco-elastic at the other.  A great variety of stress-strain, 

and strain-time, curves is exhibited by the multitude of 

solids that lie between these two extremes.  Dislocation 

mechanics has succeeded in interpreting this range of behavior 

to a remarkable extent.   At times past it was thought that 

glasses are always nearly visco-elastic in their  behavior. 
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but it is now known that they too have a wide range of 

behavior.  Silicate glasses tend to be viscous, while 

metallic glasses tend to be plastic, and amorphous polymers 

lie somewhere in between. 

Fortunately, just as for crystalline solids, dis- 

location mechanics is flexible enough to encompass the 

behavior range without straining its credibility.  The 

reason for this is the heterogeneous nature of the processes 

that are involved.  The macroscopic behavior is the 

resultant of sums and products of these heterogeneous 

elements.  Since they are varied, the macroscopic behavior 

is even more varied.  This is illustrated by Equation (1) or 

(2), which state that the macroscopic strain-rate depends on 

the product of the dislocation line length (and line shape) 

and the average velocity.  But neither of these quantities 

is fixed.  The velocity depends strongly on streis and the 

line length depends on the prior strain. Furthermore, the 

average velocity of a dislocation line represents a distribu- 

tion of local velocities that can vary markedly in space and 

time.  All of these factors lead to a great variety of net 

macroscopic behaviors. 

Depending on the values of the constants in the 

appropriate equations, stress-strain curves with and with- 

out upper yield points are obtained; creep curves with and 

without incubation periods can be expected; and various 
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shapes for the transition regions of inhomogeneously drawn 

fibers can be predicted in much the same way as has boon 

done for crystalline solids. 

Because of its inhomogeneous nature, plastic flow 

leads to stress concentrations and broken chemical bonds. 

These in turn result in the fracturing of glasses as 
s 

emphasized by Marsh.   They also lead to enhanced chemical 

reactivity and stress-corrosion. 

Serious studies ot the mechanical behavior of 

silicate, metallic, and polymeric glasses have only just 

begun in terms of dislocation and disclination lines (Oilman 
15 

and Li, 1970)  , but this is a most promising approach for 

developing an understanding of their varied behavior and 

for unifying this branch of the physical mechanics of solids 

with present knowledge of crystalline solids. 

It may be possible to develop more incisive experi- 

mental knowledge by measuring internal friction during the 

uniaxial deformation of glasses.  This might reveal the mean 

life times of dislocation loops and the variation of the lino 

density with plastic strain.  Studies of changes in deforma- 

tion modes with temperature, stress level, and strain rate 

might also be revealing.  It might also be possible to 

detect heterogeneous flow at the molecular scale by applying 

gold decoration techniques to the surface steps that 
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emorginq dislocation lines must create.  After tho nfrpn 

have been decorated, a replica of the surface can br made 

for study with an electron microscope. 
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Figure 2.  Dependence of dislocation line length on time 
assuming constant number of expanding loops and 
attrition through collisions. 
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I.  Introduction 

Hardness measurements are at once among the most 

maligned and the most magnificent of physical measurements. 

Maligned because they are often misinterpreted by the 

uninitiated, and magnificent because they are so efficient 

in generating information for the skilled practitioner. 

They can quickly yield quantitative information about the 

elastic, anelastic, plastic, viscous, and fracture properties 

of a great variety of both isotropic md anisotropic solids. 

The tools that are used are simple and the sample sizes that 

are needed are typically small and sometimes sub-microscopic. 

This makes it unnecessary to have large specimens in order 

to measure strength properties and makes it possible to 

measure the properties of various microscopic particles 

within the matrix phase of a poly-phase metal, mineral, or 

ceramic material.  This is why hardness may be considered to 

be a strength microprobe. 

It will not be possible here to discuss the multi- 

tude of relationships between hardness measurements and 

strength properties.  Only a few selected topics can be 

considered.  First, some features of the test itself will 

] 
:i 
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recoivc attention and  then amm of  the oorrolatlonB  that 

oxlst  between hardneaa  and other  fundamental,  propertiea. 

iln   the   first  category  are  the  effects  of: 

a) friction 

b) pressure 

c) plastic anisotropy 

In the second category are physical factors that determine 

hardness: 

a) cohesive shear strength 

b) strain-hardening (high dislocation mobility) 

c) intrinsic plastic resistance (low dislocation mobility; 

Noxt' an example will be given of how hardness can be 

used as a research tool to solve a specific strength problem. 

• 

D 

:: 

D 

II.  Some Complexities of the Indentation Proce ss 

For an Isotropie, perfectly-plastic solid with 

frictionless surfaces, the theory of hardness indentations 

is relatively simple as reviewed by Tabor (1951).  A con- 

clusion of the theory is that the hardness number, II, equals 

approximately 1Y, where Y is the tensile yield stress which 

is in turn equa] to 2S, where S is the shear yield stress. 

Thus, 11   68.  However, many solids do not satisfy the 

initial assumptions.  Crystals, for example, are not isotropio. 

Most solids exhibit strain-hardening and some transform under 

pressure into now solid or liquid phases.  Also, the assumption 
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of low friction between the indenter and the specimen is 

doubtful at high pressure levels, especially for hard 

covalent.ly-bonded solids, 

a)  Friction 

No attempt will be made here to calculate the effects 

of friction on the forces involved in hardness tests.  What 

will be done is to sketch the slip line fields for various D 

cases in order to emphasize that the friction between an 

indenter and a specimen can markedly affect the plastic flow 

field and therefore the measured hardness number.  m addition 

to difficult computational problems, a proper theoretical 

assessment of these effects requires that the friction 

coefficient be known at very high pressure levels.  Since 

this is not the case, the theory is not yet completely satis- 

factory. 

Consider two dimensional indentations as illustrated 

in Figure 1.  Rigid blunt indenters are sketched at the top 

with the smooth, or frictionless, case on the left and the 

rough, or infinite friction, case on the right/  For a dis- ; 

cussion of the methods used to construct these fields the 

reader is referred to the book by Hill (1951).3 The differ- 

ences in the patterns arise because the slip lines lie at 

45« to a shear-free surface and at 90o to a rigidly-clamped 

surface.  The resulting flow fields are quite different 

both in form and extent.  The field is more compact in the [ 
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smooth case with flow occurrinq immodlately under the 

indenter except at its very center where I sinqular point 

exists at which fracture will tend to occur.  In the rouqli 

case, no flow occurs immediately under the indenter so it 

pushes a wedge of undeformed specimen material ahead of it- 

self. 

Next, compare the slip lino fields for indonters 

with 90° points on them as shown in the Middle Of the figure« 

Again, the field for the smooth case is mere compact ami i\ 

can be seen that the point of the indenter causes efficient 

lateral flow like the prow of a boat pushinq through water. 

Direct lateral shear is not possible in the rough case 

. 

.. 

because the slip lines adjacent to the indenter must be 

curved in order to satisfy the perpendicularity condition. 

This expands the size of the flow field. 

Finally, the fields for indenters with the 135° 

angle of a standard Vickers diamond are illustrated in 

Figure 1c.  Here, for the smooth indenter, the extent, of 

the flow field is smaller than for the 90° case.  This has 

the advantage of reducing the volume that becomes damaged 

during a test.  In the rough case an undeformed zone is 

pushed ahead of the indenter so the flow field is the same 

as for the 90° rough indenter and considerably larger than 

for the smooth 1.35° case. 

I 
I 
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.. in all of the cases illustrated above the flow 

patterns are markedly different for the rough and smooth 

cases.  Therefore, friction at the indenter-specimen 

interface can indeed have an effect on the measured hard- 

ness number.  Its importance in any given case will depend 

on various factors, such as the strain-hardening rate of 

the specimen material, the i*M of penetration, etc.  In 

some cases the net result may not be significant, but the 

possible effects of friction should often be considered and 

the subject deserves further theoretical attention. 

b)  Pressure 

Beneath some indenters the local pressure reaches 

quite high values.  The pure pressure zones are the blank 

regions beneath the rough-blunt and rough-135» indenters on 

the right in Figure 1.  The magnitude of the pressure is 

simply the hardness number.  If this is 10,000 kg/mm for 

diamond then the oressure may be as high as one megabar for 

this case.  Such high pressures may cause phase changes to 

occur in some solids.  These changes may consist of melting 

or of allotropic changes.  It is well-known, for example, 

th.t the pressure created by the indentation of ice by ÜM 

blade of a skate causes the ice to melt. 

The indentation pressure is almost great enough to  ^ 

cause germanium to change phase.  According to Bundy (1964), 

germanium transforms to its metallic form at about 115 kbar 



.. 
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„ rom  ............ur... Tins is only ..bout. t*ieo  the Vlckom 

hardness of 6M kq/mm' ( 60 kbar) so .m indentor with a 

shapo that increased the ratio of pressure to shear stress 

could easily cause the transformation. 

in the case of silicon a standard Vickers indenter 

is likely to cause a transformation because hardness numbers 

of about 1100 kq/mnr are sometimes measured at room tempera- 

ture, and the transformation pressure' is just equal to this. 

A pressure induced transformation that can be 

obsorvod roadiiy undor an indent, r occurs in CdS.  Tt»0 trans- 

formation occurs at about 24 kbar and is aucompaniod by a 

color chanqe from orange to yellow.  Therefore, if a plano- 

convex lens is used to indent the material and create the 

pressure, the color change can be observed with a microscope 

looking through the plane surface of the lens at the convex 

surface which is in contact with the specimen.  The present 

author has done this. 

c)  Plastic Anisotropy 

Many solids, especially crystals, are plastically 

anisotropic.  For such a solid it may be easier to scratch 

a particular surface along one direction rather than another. 

Also, it may be easier to scratch a surface that is cut with 

one orientation than another.  This is true even for cubic 

crystals because the critical shear stress for plastic flow 

varies from one plane to another. 
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The simple plastic theory applied by Tabor and 

mentioned previously here does not take anisotropy into 

account.  When it is taken into account the ratio of H to 

Y becomes markedly changed.  This will be discussed in more 

detail shortly. 

Investigations of both the directionality effect 

and the surface orientation effect arc often done using the 

Knoop type of indenter which makes a slender "diamond-shaped" 

impression with the ratio of the diagnols being 7:1.  An 

excellent review and extension of the work on directionality 

effects has been published very recently by Brookes, O'Neill, 
s 

and Redfern (1971).  These authors have established a relation- 

ship between the "effective resolved-shear-stress" just below 

the indenter and the observed hardness number. Orientations 

of the long diagonal of the indenter which produce minimum 

values of "effective rcsolved-shear-stross" on the primary 

glide planes correspond to maximum observed hardness and con- 

versely.  The predictions of the theory of Brookes, O'Neill, 

and Redfern are in good agreement with observations. 

Since other authors at this symposium are scheduled 

to discuss anisotropy in detail, I shall not dwell on the 

orientation dependence here; but I do wish to say more about 

the effect of anisotropy on the ratio between H and Y. 
e 

Nearly fifteen years ago, J. H. Westbrook (1958) 

did an unpublished study in which he compared measured 

uniaxial yield-stresses with Vickers hardness numbers.  Two 
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classes of materials were involved: metals constituted one 

class, and compounds with the rocksalt crystal structure 

constituted the other.  The results (Figure 2) show a 

dramatic difference in the H/Y ratios.  For the metals the 

ratio is about 3 and for the compounds it is about 35. 

Westbrook did not offer a satisfactory explanation of this 

phenomenon, but further work (also unpublished) by Johnston 
7 

and Nadeau (1964)   did lead to a proper qualitative interpre- 

tation.  These authors explained the difference in terms of 

the limited number of primary glide systems {110}<110> in 

rock-salt compounds compared with f.c.c. metals {111}<110>. 

There are only 2 independent systems in the former case com- 

pared with 5 in the latter. 

For an arbitrary plastic shape-change five indepen- 

dent glide systems are required.  Thus the deformation caused 

by an indenter in a f.c.c. metal can occur entirely on primary 

systems; whereas it cannot for rock-salt type compounds.  For 

these compounds, flow on secondary glide systems is required 

so the effects of plastic anisotropy are strongly manifested. 

The stress for flow on the secondary system in LiF (for 

example) may bo as much as 100 times the stress for flow on 
I 

the primary system (Gilman (1959)). 

I am indebted to Professor J. R. Rine of Brown Univer- 

sity for elucidating the mechanics that aro involved in ■ 

simplified model.  This model is two-dimensional and 
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therefore is intended on.1.y to be illustrative of principles. 

It should not be subjected to quantitative comparisons with 

experiments in its present form. 

Consider two-dimensional indentation by a blunt-smooth 

punch.  The yield surface is sketched in Figure 3 and the 

slip-line field is outlined in Figure 4.  In Figure 3 it is 

assumed that there are two glide systems operating; and only 

two.  One glide system is (010)[100] with yield stress = b; 

and the other is (110)[110] with yield stress = a. 

Figure 4 (top) outlines the slip line field which has 

seven regions.  It also indicates (bottom) the stress states 

within each of the regions.  The pressure on the indenter that 

is needed to just begin flow in the over-all configuration 

is: 

P (limit) - 4a + 2b 

Since a is the critical flow stress of the primary glide 

system it is the major factor in this equation.  If flow 

occurs with equal ease on the two systems, a ■ b and P = 

6a = 3Y in accordance with the isotropic theory.  However, 

if flow is difficult on the secondary system (say b = lOa? 

so P = 24.i) then the ratio of I to Y increases to 12.  In 

this way the ratio of 35 that Wostbrook observed can bo 

accounted for if b > 66a which iu  consistent with the obser- 

vations mentioned above for LiF crystals. 
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111•  Fundamental Factors That Determine Hardness 

If materials were perfectly homogeneous the size of 

the indenter used in a hardness test would not influence the 

measured hardness.  In reality materials are not homogeneous, 

and plastic flow in them is localized at dislocation lines. 

Therefore, whon a sufficiently small indenter makes contact 

with a solid, the region in which the stress is high may bo 

so small that it does not contain any dislocations or other 

major defects.  Therefore, flow cannot begin until disloca- 

tions have been nucleated under the indenter, and the factor 

that may determine th-3 hardness for very small indenters is 

the cohesive.shear strength of the material, 

a)  Cohesive Shear Strengths 

The converse of the statement just above is that 

plastic indentations may be used to measure the cohesive 

shear strengths of materials.  This was first attempted by 

the author (Oilman, 1959)  and more recent studies have been 
i o 

made by Gane and Bowden (1968). 

The method used by Oilman consisted of touching 

crystals with spherical glass indenters in a carefully con- 

trolled fashion.  Hxtremely clean spherical surfaces can be 

produced by drawing out Pyrex glass rods, breaking them, and 

then fusing the ends.  Spherical surfaces that range in 

radius fron 0.05 mm up can be produced this way.  After such 

a rod is mounted suitably, a microhardness balance can bo 
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used to accurately apply a load to it ranginq from 1 q to 200 q. 

This allows the indenter to be moved smoothly into contact 

with a crystal at a rate of ~10 Jcm/sec. 

In order to avoid dislocation nucleation under a small 

spherical indenter Oilman showed that it is necessary to: 

(a) apply loads less than some critical value, (b) contact 

dislocation-free areas of the crystal surfaces, (c) use 

freshly prepared indenters, (d) not re-use an indenter that 

had once produced dislocation nucleation, and (e) minimize 

the radius of the indenter to reduce the size of the stressed 

volume.  With these precautions a load as hiqh as 10 g can bo 

applied to an indenter of 52y radius? in contact with LiF 

without causing dislocation nucleation.  This should produce 

a maximum shear stress of about 7.4 x 109 d/cm2 according to 

the Hertz theory of elastic contact.  This stress is more 

than two orders of magnitude greater than the yield stress of 

the crystals {~5 x 107 g/mm?).  Since the shear modulus for 

LiF is about 6.25 x 10'' d/cm,   this maximum stress is about 

l/8r) of the shear modulus.  It was suqqcstod that this method, 

after some refinement, can be used to measure the stresses 

needed for homoqeneous dislocation nucleation in crystals. 

In the work of Gane and Bowden, small indenters of 

TiC were made by electropolishing rods down to fine tips of 

-500A radius.  These were loaded electromagnetically inside 

: 

: 

.) 
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in oloctron microscope so the indentation process could bo 

observed in sit».  The results wore siiailar to those 

described for I.iK  but were made on crystals of qold, copper, 

and aluminum.  No penetration occurred until a critical load 

was reached, and this critical load frequently corresponded 

to the cohesive shear strengths of the metals. 

On the basis of both sets of experiments it may bo 

concluded that solids which are ordinarily soft become highly 

resistant to penetration if mobile dislocations are not 

present.  Penetration only occurs when the load reaches a 

value that is high enouqh to cro:«te the stresses needed for 

homogeneous dislocation nucleation. 

b)  Strain-Hardening (high dislocation mobility) 

If a crystalline solid contains numerous dislocations 

its yield stress can vary over a wide range that may include 

several orders of magnitude.  If it is a metal or a salt, 

impurity defects largely determine whether it is hard or 

soft.  If it is a covalent compound, the intrinsic strengths 

of its chemical bonds dotermino its hardness. 

Yield .'»tresses are usually measured in a uniaxial 

stress tost, that does not constrain the flow pattern.  Such 

a test does not model the situation under an indonter whore 

a complex and highlv constrained flow pattern exists.  From 

the slip-line patterns of Figures 1 and 4 considerable inter- 

secting glide must occur and therefore much strain-hardening. 
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As a result, two limiting cases arise.  In one case dislo- 

cation mobility is high, so the flow rate becomes limited by 

strain-hardening.  In the other dislocation mobility Is low, 

and it is the factor that limits the flow ra'^. 

The two limiting cases are illustrated in Figure 5. 

The lower line correlates data for pure face-centered-cubic 

metals.  These metals are particularly suited to the type of 

correlation that is given here for two reasons.  First, being 

noble metals, they are readily purified so that measurements 

on quite pure samples are available.  Second, the dependence 

of their yield stresses on impurity content, and on tempera- 

ture, is quite small and, hence, large errors due to these 

factors are unlikely. 

Individual dislocations move readily in these metals 

at much lower stresses (a factor of 10** lower) than the 

stresses of Figure 5.  Therefore, the flow that occurs during 

indentation is not being limited by the drag on isolated 

dislocations.  Intersections between dislocations create jogs 

on them and these jogs create trails of dislocation dipoles 

behind the moving dislocations.  Soon the structure becomes 

filled with interacting dislocations and further flow is 

limited by the strengths of the interactions.  Since the 

interactions are elastic, for a given geometric configuration 

their strengths are proportional to the elastic moduli.  In 

this way the linear proportionality of Figure 5 arises. 
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c)  Intrinsic Plastic Resistance (low dislocation mobility) 

Figure 5 illustrates the point that the behavior of 

covalently bonded crystals is qualitatively different from 

that of metals.  First, the ratio of hardness to elastic 

modulus is much greater (being about 0.24 for diamond compared 
a 

with 0.3 x 10   for rhodium).  Second, the slopes of the 

correlation linos are different (being 1.5 for the covalent 

crystals compared with 1.0 for the f.c.c. metals). 

The qualiIative difference in behavior between these 

two classes of material arises because the flow-rate is 

limited in the metals primarily by interactions between dislo- 

cations , whereas it is limited in covalent crystals primarily 

by interactions between dislocations and the chemical bonds of 

element or compound.  Another way of saying this is that short 

range (atomic) interactions are involved in the latter case; 

and longer range (elastic) interactions in the former.  This 

manifests itself in the temperature dependence which is very 

weak for a f.c.c. metal and is very strong for a covalent 

crystal above a critical temperature. 

The basic reason for the difference in behavior is 

simply that bonding in covalent compounds is highly stereo- 

specific whereas in f.c.c. metals only a small fraction of 

the binding energy depends on stereographic factors.  There- 

fore, the energy of a dislocation in a metal is nearly 

independent of its position.  In contrast, a dislocation's 

energy depends strongly on its position in a covalent crystal 

. 
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because an unpaired eiect.on is associated with it when it 

is in its mld-qlide position. 

There is no space here to discuss details of dislo- 

cation structures in covalont crystals which Invo.ve „or 

th. diamond or wurzite crystal structure, .*., -ow, and 

60« lines as well as positive and negative Kinks on each type 

of  line.  Regardless of the details, the basic fact remains 

that in order to plastically shear .uch a crystal, electron- 

pair bonds must be first broken and then remade. Thus, two 

unpaired electrons exist each time an atomic sh.ar p.occ.s 

I, half completed.  Because of this it may be expected that 

the plastic characteristics will be closely connected with 

the electronic characteristics of covalent crystals. This 

is indeed the case as shown in Figure 6 where measured valu.s 

oe the activation energy for pla.tlc glide (Chaudhuri, MM. 

and Rubin. 1962)" are sh .wn to egual twice the optical band 

,ap.  This I. con.latent with the statement, above because 

breaking an electron-pair bond (Inside a crystal, mean, that 

, „mo «waited from the valence band to the two electrons become excltea rrom 

the conduction band so the energy reauired is the gap energy 

taken twice.  Thi» is also con.istent with the^tunnellng 

„„..el for dislocation mobility (Oilman, IM«   I* «bich low 

temperature motion I. determined by the rate of electron 

tunneling across the qap. 
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llAfdlMMN eorr«UtM with qlidr activation encrqy an 

shown in Kiquro 7 HO it would bo expoctcd that ^ardnes« 

should correlate with the enerqy gap.  However, the uni-B of 

H       hardness are t-nergy/volume so it is the energy gap per unit 

j       volume that should be correlated and this is done in Figure 8. 

A similar correlation is shown in Figure 9 for III-IV compounds, 

in both cases the correlations are good but they have different 

slopes.  This may result from the greater ionicity in the case 

of the III-IV compounds. 

Since ionic bonding results from lonq range electro- 

static forces it does not contribute directly to hardness.  In 

this respect it is similar to metallic bonding. Therefore, It 

is appropriate to separate the homopolar and heteropolar 

components of the bonding In compounds In order to see whether 

I       hardness correlate, better with the homopolar component than 

with the total bonding. One way of doing this Is shown In 

[j       Figure 10, where the data of Figure 9 are replotted.  Here 

the homopolar energy gap as defined by Phillip. (1970)   Is 

used instead of the optical band gap. The data correlate 

quite well and now the slope Is 3/2 *hlch Is con.l.tent with 

Figures «> and 7.  This Is also consistent with the well-known 

qualitative f«rt that for pure crystals the greater the 

homopolar component of bonding the harder the crystal. 

Another correlation that demonstrates the close 

connection between hardness and bond strength I. the 

I 
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dependence on bond length since bond lengths and bond 

energies are closely related; especially for a homologous 

series of compounds.  This type of correlation was discussed 

long ago by Coldschmidt (1926)   and reviewed by flvans (1946) 

in his book.  For group IV crystals and III-V compounds it 

has been demonstrated by Wolff et al. (1958).   For II-VI 
1 7 

compounds it has been discussed by Cline and Kahn (1963). 

Figure 11 shows the data for the III-V compounds. 

Because of the clear connections between chemical 

bonding, hardness, and dislocation mobilities, an attempt has 

been made here to relate the mineralogist's Moh scale of 

hardness to physical properties.  The first step was to 

relate indentation hardness with Moh hardness and the result 

of this is shown in Figure 12. This figure represents data 
i e 

averaged from various sources including:  Taylor (1949), 

Khrushchov (1949).^ Winchell (1945),^ and Knoop et al. (1939). 

The indentation hardness values for the Moh scale 

minerals are plotted in Figure 13 versus the bulk moduli of 

these minerals.  The bulk moduli were obtained from Clark 

(me).'2 The correlation is only fair, but certainly good 

enough to indicate that the Moh scale is based on relative 

bond strengths.  The data for quartz and orthoclase are 

anomalous.  The reason for this is unknown at present. 

The next class of materials whose hardness can be 

given a physical interpretation is the "hard metals." That 
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is,  compounds consisting of a transition metal plus a 

metalloid such as B, C, or N.  These compounds are Mtttll 

in the sense that they conduct electricity readily, but 

^       they are covalent compounds in the sense that they are not 

ductile, but brittle.  This mixed behavior is possible 

because the conduction mainly occurs in tho s-band of 

energy, whereas much of the cohesion occurs in the d-band. 

One larqe class of "hard metals" has the rock-salt 

structure.  This class contains some 80-90 hydrides, 

borides, carbides, nitrides, and oxides.  They tend to 

glide on the {111} plane and a cutaway schematic drawing 

of this is shown in Figure 14. According to the bonding 
2 3 

theory worked out by Lye (1967)  for Tie an important 

contribution to the bonding arises from overlapping of the 

d-orbitals of the Ti atoms at the octahedral holes in the 

f.c.c. titanium array. The carbon atoms at these sites 

have six titanium neighbors and, therefore, six overlapping 

d-orbitals. The overlap allows one or more electrons of 

the carbon atoms to reduce their kinetic energies by moving 

in the d-band of the Ti sublattice. Also, the overlapping 

d-orbitals are stabilized by the positive potentials of the 

carbon nuclei, so a mutually stabilizing cooperation occurs 

between the two sublattices. 

I. 
1! 

.. 

I 
I 
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It may be seen in Figure 14 that there ate two types 

of site in the plane of the carbon atoms.  The A-sites are 

occupied by carbon atoms and overlapping orbitals in the 

figure and the B-sites (at the crnter of the triad defined 

by the shaded circles) are unoccupied.  Now in order for 

glide to occur in the structure, carbon atoms must glide from 

A-sites to B-sites and then back to A-sites.  Since there are 

no overlapping orbitals at B-sites the carbon atoms must lose 

their excess binding energies (irreversibly) and then regain 

thorn when they return to A-sites.  This means that strong 

forces resist the motions of dislocations in these compounds. 

The stress needed to overcome the chemical, resisting force 
2 k 

has been estimated by Oilman (1970)   to be: o ■ 2AF/V where 

AF is the free energy of formation of the compound and V is 

the molecular volume.* The approximate validity of this 

.. 

*An improved version of his argument is as follows. The 

barrier to be overcome is the energy per bond of carbon; 

or AF/6, where 6 is the coordination number.  The work done 

by the applied shear stress, S, in overcoming the barrier 

is (Sb'w)^ where b' is the partial Burgers displacement 

which equals b//T in this structure, and w i« the length of 

the dislocation segment.  Equating these terms yields an 

expression for the local shear stroaa:  S = AF/2bI.  Because 

of the constraint factor the hardness, II, equals 6S; or 

since b3 ■ /5v the hardness equals 2.14AF/V which is nearly 
the same as the previous result. 

I 
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relationship is demonstrated for carbides in Figure 15, and 

it is also approximately valid for the refractory diborides. 

IV.  Hardness es a Research Tool (dynamic yielding) 

Hardness measurements are used in all aspects of 

structural materials research as this symposium attests.  Its 

use in alloy development, measuring creep resistance, studying 

environmental effects, etc. will be discussed in detail by 

other authors.  I shall take just one example of an engineer- 

ing application in which it was useful because it could 

partially replace a much more complex measurement. My example 

comes from the recent program to develop improved ballistic 

armor. 

The first step in stopping a high-speed armor-piercing 

projectile is to blunt its tip so that it cannot "knife" its 

way through a piece of armor.  In order to cause such blunting 

the dynamic yield stress of the armor must be greater than   ^ 

about 40 kbar (corresponding to a hardness of about 1000 kg/mm ) 

The dynamic yield stress is measured by creating an 

intense plane wave (uniaxial strain) in the test material 

and then observing its profile as it propagates.  The 

behavior is illustrated in Figure 16.  At the left the initial 

state of an element of material is shown.  In the middle the 

element has been compressed uniaxially by the wave.  This 

changes its volume and also puts she^r strain into it.  On 
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the rlqht the volume change remains, but the shear strains 

have relaxed.  The strcsa level at which shear relaxation 

occurs is called the dynamic yield stress.  For hard 

compounds it correlates well with static indentation hard- 

ness as shown in Figure 17 (the data are a courtesy of C.   F. 

Cline) .  Thus# hardness can be used as an initial screen 

for candidate armor materials.  Knowledge of the chemical 

factors that determine hardness can, in turn, be used to 

predict new materials such as Cline did for Be;B. 

V.  Suggestiont. -or Future Work 

On the basis of the discussion presented here, future 

studies that use indentation hardness need to be supported by 

a careful study of the role that friction play» in the hard- 

ness test.  Also, the quantitative effect» of plastic anisotropy 

need study in order to predict the large effects it has on 

measured hardness values. 

The chemijtry of hardness needs systematic and com- 

prehensive study in order to provide more understanding 

followed by predictive capability.  For example, what role 

is played by the band gap energy?  Is the homopolar component 

of the binding a dominant factor?  Is electronegativity 

difference an important variable?  How do hard covalcnt 

compounds differ from hard metals? Why do quartz and 
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orthoclaio appear to behave anomalously? Can correlation« 

betwoon hardneaaea and heats of formation be Improved? What 

Is the effect of pressure on hardneas? 

This research was supported by the Advanced Research 

Projects Agency of the Departisent of Defense under Contract 

No. DAIIC15-71-C-0251 with The University of Michigan. 
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Figure 1.  Effect of Friction on Plastic Flow Patterns under 
Rigid Indenters (two-dimensional). 
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Figure 2.  Correlation Linen  for Metals and Ionic Crystals 
Relating Hardness Numbers and Yield Stresses 
(after J. H. Westbrook) 
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Figure 3.  Two-dimensional Yield Surface for an Anisotropie 

Ideal Plastic Material 
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Figure 4.  Stress üistr. utions Under a Two-dimensional Punch 
at the Limiting Load for General Plastic Flow 
(after J. R. Rice) 
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Figure 9.    Correlation of Hardness and Energy Gap Density 
for Group I1I-V Compound Crystals 
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Figure 10.  Correlation of Hardness and Energy Gap Density 
for Group III-V Compound Crystals Using the 
Homopolar Part of the Energy Gap 
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Figure 11. Correlation of Hardness and Bond Distance for 
III-IV Compound Crystals 

.. 

-710- 



r cooo 

9000 

N 

ft 1000 

900 

100 

90 

Olomond 

/ 

Corundum^ 
/ 

//topaz 

/ ^OrthocloM 

yApotit« 
/ 

/Fluorlti 
f 

'Colcltt 

t Gypsum 

/ 

<lTole 
i        I I        I i 

I    23456789   10 
MOH HARDNESS NUMBER 
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Figure 14.  Schematic Bonding within Hard Metal Compounds 
that have the Rock-Salt Crystal Structure 
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Figure 17. Correlation of Dynamic Yield Stresses Measured 
in Shock Experiment! with the Indentation 
Hardnesses of Some Hard Compounds (after 
C. Cline) 
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